

Aviation's impact on global temperature: Cumulative and Short-lived Climate Pollutants October 13th, 2020

Myles Allen

Environmental Change Institute, School of Geography and the Environment & Department of Physics, University of Oxford

David Lee

Centre for Aviation, Transport and the Environment Manchester Metropolitan University

How is aviation contributing to global warming?

Atmospheric Environment Available online 3 September 2020, 117834 In Press, Journal Pre-proof (?)

The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018

Dedication: This paper is dedicated to the memory of Professor Ivar S. A. Isaksen of the University of Oslo, whose scientific excellence, friendship, and mentorship is sorely missed.

D.S. Lee ^a A ^{ID}, D.W. Fahey ^b, A. Skowron ^a, M.R. Allen ^{c, n}, U. Burkhardt ^d, Q. Chen ^e, S.J. Doherty ^f, S. Freeman ^a, P.M. Forster ^g, J. Fuglestvedt ^h, A. Gettelman ⁱ, R.R. De León ^a, L.L. Lim ^a, M.T. Lund ^h, R.J. Millar ^{c, o}, B. Owen ^a, J.E. Penner ^j, G. Pitari ¹ ... L.J. Wilcox ^m

All data from David Lee. All mistakes by Myles Allen.

Article | Open Access | Published: 04 September 2019

Improved calculation of warming-equivalent emissions for short-lived climate pollutants

Michelle Cain 🖂, John Lynch, Myles R. Allen, Jan S. Fuglestvedt, David J. Frame & Adrian H Macey

npj Climate and Atmospheric Science 2, Article number: 29 (2019) Cite this article

9711 Accesses | 12 Citations | 118 Altmetric | Metrics

How drivers contribute to top-of-atmosphere energy imbalance (Effective Radiative Forcing)

How does this contribute to global warming?

Human-induced warming (ΔT) over a time-interval from a few years to a few decades is proportional to **total cumulative carbon dioxide emissions** over that time-interval (*E*) plus the **change in global energy imbalance** due to other human influences on climate (ΔF):

$$\Delta T = \kappa \left(E + \frac{\Delta F}{\alpha} \right)$$

- κ = "Transient Climate Response to Emissions" \approx 0.4°C per TtCO₂
 - TtCO₂ = Trillion tonnes of CO₂; AR5 likely range for κ : 0.23-0.68°C
- α = "Normalized Absolute GWP" of CO₂ \approx 1.0 W/m² per TtCO₂
 - AR5 values of 0.9-1.2 for H=20 to 100 years

How does this contribute to global warming?

Human-induced warming (ΔT) over a time-interval from a few years to a few decades is proportional to **total cumulative carbon dioxide emissions** over that time-interval (*E*) plus the **change in global energy imbalance** due to other human influences on climate (ΔF):

$$\Delta T = \kappa \left(E + \frac{\Delta F}{\alpha} \right)$$

- κ = "Transient Climate Response to Emissions" \approx 0.4°C per TtCO₂
 - TtCO₂ = Trillion tonnes of CO₂; AR5 likely range for κ : 0.23-0.68°C
- α = "Normalized Absolute GWP" of CO₂ \approx 1.0 W/m² per TtCO₂
 - AR5 values of 0.9-1.2 for H=20 to 100 years
 - Slightly more accurate version, with r pprox 0.25

$$\Delta T = \kappa \left(E + (1 - r) \frac{\Delta F}{\alpha} + r \frac{\overline{F} \Delta t}{\alpha} \right)$$

How does this contribute to global warming?

Human-induced warming (ΔT) over a time-interval from a few years to a few decades is proportional to **total cumulative carbon dioxide emissions** over that time-interval (*E*) plus the **change in global energy imbalance** due to other human influences on climate (ΔF):

$$\Delta T = \kappa \left(E + \frac{\Delta F}{\alpha} \right)$$

- κ = "Transient Climate Response to Emissions" \approx 0.4°C per TtCO₂
 - TtCO₂ = Trillion tonnes of CO₂; AR5 likely range for κ : 0.23-0.68°C
- α = "Normalized Absolute GWP" of CO₂ \approx 1.0 W/m² per TtCO₂
 - AR5 values of 0.9-1.2 for H=20 to 100 years
 - Slightly more accurate version, with $r \approx 0.25$

$$\Delta T = \kappa \left(E + (1 - r) \frac{\Delta F}{\alpha} + r \frac{\overline{F} \Delta t}{\alpha} \right)$$

Total CO₂ forcing-equivalent emissions

Aviation CO₂ emissions since 1980

Aviation CO2 emissions (MtCO2 per year)

Cumulative CO₂ emissions, integrated over time

Cumulative CO2 emissions since 1980 (GtCO2)

Cumulative CO₂ forcing-equivalent emissions

Cumulative CO2-forcing-equivalent emissions

Aviation-induced warming: 0.037°C = 6% of total human-induced warming over this period

Suppose emissions decline by 1.4% per year from 2018 onwards: impact on global warming?

A hypothetical scenario of emissions decline

Aviation-induced warming under a 1.4% emissions decline scenario

How some people define Net Zero

Key take-home conclusions

- We have yet to agree on exactly what Net Zero means, which depends on what we are trying to achieve.
 - This does NOT matter for CO_2 , it matters a lot for SLCPs.
- Traditional "CO₂-equivalent" emissions based on GWPs are not fit-for-purpose in aiming for a global temperature goal.
- Alternative "CO₂-warming-equivalent" measures provide a more realistic indication of impact on global temperature.
- If aviation emissions were to decline by 1.4% per year from now on, aviation would not contribute to any *further* global warming: reduced warming due to SLCPs cancels cumulative impact of ongoing CO₂ emissions.

