The role of electric-powered flight in real-world commercial operations

<u>Alejandro Sobron</u>, Ingo Staack, Petter Krus Dept. of Management and Engineering, Linköping University, Sweden

About us

About me

PhD candidate / SARC student representative Department of Management and Engineering Division of Fluid and Mechatronic Systems Linköping University

T +46 700 85 05 12 +46 765 66 18 48 @ <u>alejandro.sobron@liu.se</u> in linkedin.com/in/alejandrosobron

About this talk

- 1. Why electric? (fully electric, battery powered)
- 2. Challenges (some)
- 3. Effects on today's (yesterday's?) air transportation market
- 4. Key enablers
- 5. Conclusions

Temporal context

Environmental!

* source: NASA's archive

Environmental!

11

Electric flight: why are we here?

Environmental!

Ready to go electric?

* source: European Commission

Not that easy...

Not that easy...

- No emissions!
- Performance: MTOW = MLW
- Reduced op. flexibility (but high system efficiency)
- Turnaround time becomes (very) relevant
- Battery degradation = range degradation?
- High "price" for reserves

- No emissions!
- Performance: MTOW = MLW
- Reduced op. flexibility (but high system efficiency)
- Turnaround time becomes (very) relevant
- Battery degradation = range degradation?
- High "price" for reserves

- No emissions!
- Performance: MTOW = MLW
- Reduced op. flexibility (but high system efficiency)
- Turnaround time becomes (very) relevant
- Battery degradation = range degradation?
- High "price" for reserves

2020-10-14

19

Energy storage

- lower [Wh/kg] (affects mass)
- lower [Wh/m³] (affects L/D)

• cell energy ≠ useable energy!

source: M. Hepperle. Electric flight - potential and limitations. In Energy Efficient Technologies and Concepts of Operation, NATO, Lisbon, Oct. 2012

Energy storage

Energy storage

Energy management

Commercial aviation today (yesterday?)

- Data from the U.S. Department of Transportation
- Reporting U.S. air carriers + other carriers with operations to, from, and inside the U.S.
- Data from years 1998 2017
- "Photograph" of year 2017
- Stage length (great-circle distance)
- Assumption: U.S. ≈ global market

Departures vs stage length (U.S. 2017)

Revenue-payload vs stage length (U.S. 2017)

Energy consumption (further assumptions)

Energy consumption vs stage length (U.S. 2017)

Energy "decarbonized"

- Best scenario: electrify all flights under 500 km by 2040 ≈ 5 %
- All replaced energy should come from renewables
- Translation from energy into emissions is **not** straightforward
- Noise benefits not assessed

Key enablers

Technologies:

- Battery cycle stability
- Battery integration at system level
- Complexity jump at 1+ MW power:
 - Power electronics, weight & size
 - EMC & EMI
 - Thermal management & losses
 - Charge & maintenance

Operation:

- New approach to reserves (same safety!)
- Lower crew costs (single-pilot?)
- Mission profile optimization
- Change mindset & business model
- Charging infrastructure, energy sourcing
- Financial support (e.g. landing-fee exception, bonus-malus)

Conclusions

- May be feasible and beneficial for very short hops and niche markets
- Realistic range very limited in the short/mid term
- Even in best scenario, very limited impact on aviation's footprint
- The country's electricity production and allocation strategy should be prepared in advance even short-range operations add up to a sizeable amount of energy
- The coexistence of different propulsion technologies is unavoidable, and electrification will take different forms across the market.

Outlook

 Risk for a social & political "hype" (see Gartner's Hype Cycle)

BUT, from an environmental perspective:

- Any contribution is welcome
- All available concepts & technologies should be used (cleverly)

AND:

• Aviation post-corona may be different

Thanks!

Alejandro Sobron alejandro.sobron@liu.se Tel. +46 700 85 05 12 linkedin.com/in/alejandrosobron

Fuel Reserves (ICAO Annex 6, Part I, section 4.3.6 "Fuel Requirements")

- Contingency fuel
 - add. en route fuel e.g. wind, ATM route changes/restrictions, typically $5\%/3\%/0\%^{(*)}$
- Destination alternate fuel
 - missed approach & landing at alternate airport
- Final reserve fuel
 - 45 min(!) holding flight for reciprocating engines
 - or, 30 min for jet engines
- Additional fuel
 - e.g. ETOPS fuel, MEL
- Short range operation suffer extreme from alternate/reserves (45 min! for non-jet aircraft)

S-23 commuter study								
	Case	Specific	Specific	Energy	Energy	Mission	Max	Energy
		cell	system	climb	+ others	time	stage length	reserve + systems
		[Wh/kg]	[Wh/kg]	[kWh]	[kWh]	[h]	[km]	[%]
	Α	260	128	217	167	0.45	120	(20) ¹
	В	260	160	217	263	0.61	177	0
	С	260	200	217	383	0.81	248	0
	D	?	300	217	683	1.31	427	0
	E	?	400	217	983	1.81	605	0
NOTE 1: In case (A), reserve energy would be 20% if assumed that batteries can be								
fully depleted (100% DOD) in case of need, despite effects in battery lifespan.								

