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Introduction

* Aviation contributes 5% to the anthropogenic warming effects
«  Contrails' effects are short but large

«  Operational flexibility of parallel hybrid electric concept provides possibility to
reduce contrail formation in contrail-sensitive regions
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Baseline aircraft/engine

*  Airbus A320neo type
« CFM LEAP-1A engine
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«  Cruise condition with given thrust Battery (o ower | Electric
converter motor

Battery energy density 600 Wh/kg
Maximum electric motor 97.5%
efﬁciency taxi-out  take-off [ + H taxi-in
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Methodology overview

Inputs Earth system model (EMAC)**:

Hybrid electric aircraft (HEA): » Horizontal grid of 310 km
» Turbofan engine

« 2030 battery technology
* Power management strategy « Time step 12 mins

v

EMAC/CONTRAIL submodel*

* Vertical resolution of 1 km

Results
Derive Schmidt Appleman Analyze changes of PCC by
Criterion (SAC) for HEA HEA:

é  Local effects
» Climatological effects

* Seasonal effects

Calculate potential contrail

coverage (PCC) vs. hybridization
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Derivation of Schmidt Appleman Criterion
for HEA

© F-V=mng-mp-Q+mg-Pg
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Kerosene Electricity
. G = CpPa R-EIH,0
e R-(1-M)Q+(1-R)(1-NE)QF
_ My _

* R:= sy Q(Mk/ME)

Baseline propulsion efficiency (n,) 0.4 Water emission index (EIH20)

Lower heating value (Q), MJ/kg 43.2 Molar mass ration of water vapor and dry  0.622

air (g)
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Threshold of contrail formation by SAC at 250 hPa
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. ng Is the efficiency of the electrical powertrain
. The slope (G) decreases as increasing the electrical power

. The temperature threshold (Tmax) of HEA to form contrails reduces as increasing the
electrical power

TU Delft . In most situations, a large percentage of electric power is required for contrail avoidance 6




]
TUDelft

Local changes of potential contrail coverage
(PCC)
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Climatological effects on PCC
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Conclusions

«  The operational flexibility of hybrid-electric aircraft (HEA) offers opportunities
in contrail avoidance.

«  The HEA requires lower atmospheric temperatures to form contrails than the
conventional aircraft.

- To avoid contrails at cruise altitude, a large fraction of electric power (more
the 50% in the current study) is required.

«  The reduction in PCC can be achieved locally.
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Discussions and future work

«  The current work doesn’t not consider the actual flight routes, which will be

included in the subsequent research

«  The derivation of SAC is valid for hybrid electric system with battery. For

other forms of hybridization, e.g., fuel cell, a different SAC should be
derived

* In case of designing a HEA system for contrail avoidance, a proper power

management strategy is required at the first place.
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Thank you!
Questions?
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