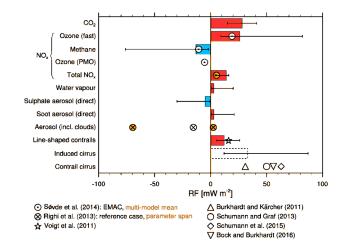
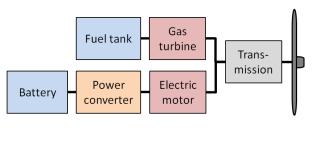
Impact of hybrid electric aircraft on contrail formation

Feijia Yin¹, Volker Grewe^{1,2}, Klaus Gierens²

Faculty of Aerospace Engineering, TU Delft
Institute of Atmospheric physics, DLR

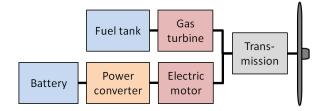

3rd ECATS conference, 13th-15th October, 2020



Full length paper available in Aerospace ECATS special issue

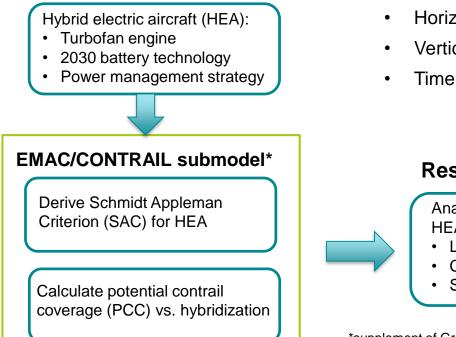
Introduction

- Aviation contributes 5% to the anthropogenic warming effects
- Contrails' effects are short but large
- Operational flexibility of parallel hybrid electric concept provides possibility to reduce contrail formation in contrail-sensitive regions



Baseline aircraft/engine

- Airbus A320neo type
- CFM LEAP-1A engine
- Technology level 2030 for electric system
- Cruise condition with given thrust



van Holsteijn et al, "Finding the Operating Limits and Optimal Configuration of an Electrically Assisted Turbofan", ASME TurboExpo 2020, Sep 2020.

Methodology overview

Inputs

Earth system model (EMAC)**:

- Horizontal grid of 310 km
- Vertical resolution of 1 km
- Time step 12 mins

Results

Analyze changes of PCC by HEA:

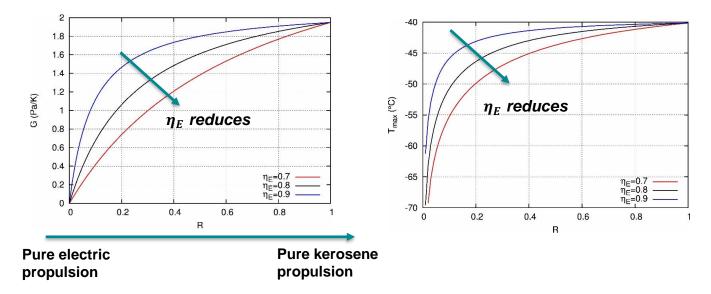
- Local effects
- Climatological effects
- Seasonal effects

*supplement of Grewe et al., 2014 **Jöckel et al. 2010

Derivation of Schmidt Appleman Criterion for HEA

•
$$F \cdot V = \eta_k \cdot \dot{m}_f \cdot Q + \eta_E \cdot P_E$$

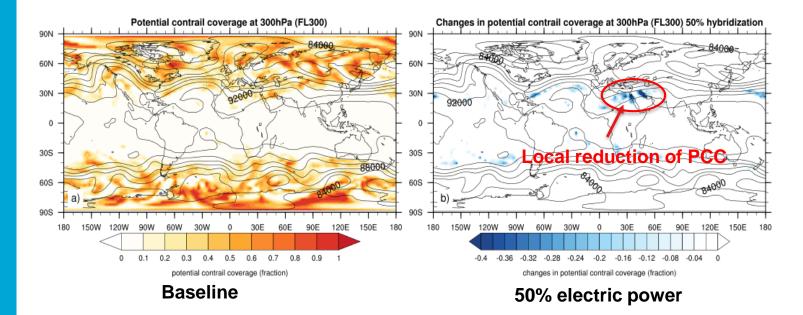
Kerosene Electricity


•
$$G = \frac{c_p p_a}{\varepsilon} \frac{R \cdot EIH_2 O}{R \cdot (1 - \eta_k)Q + (1 - R)(1 - \eta_E)Q_E^0}$$

•
$$R \coloneqq \frac{\dot{m}_f}{\dot{m}_{fmax}}, Q_E^0 \coloneqq Q(\eta_k/\eta_E)$$

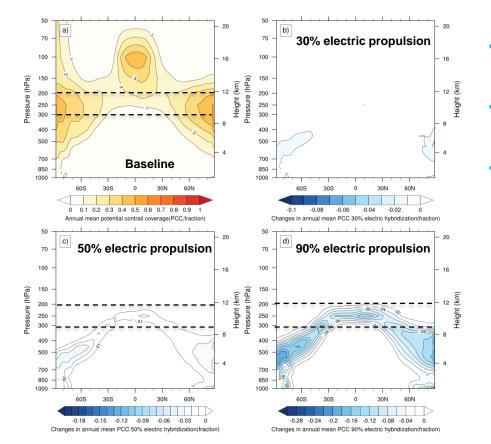
Variable	Value	Variable	Value
Baseline propulsion efficiency (η_k)	0.4	Water emission index (EIH2O)	1.25
Lower heating value (Q), MJ/kg	43.2	Molar mass ration of water vapor and dry air $(\boldsymbol{\epsilon})$	0.622

Threshold of contrail formation by SAC at 250 hPa



- η_E is the efficiency of the electrical powertrain
- The slope (G) decreases as increasing the electrical power
- The temperature threshold (Tmax) of HEA to form contrails reduces as increasing the electrical power
- In most situations, a large percentage of electric power is required for contrail avoidance

6


Local changes of potential contrail coverage (PCC)

• At FL300, 50% hydration: the reduction in PCC is at 30°N and 40°S and localized

Climatological effects on PCC

- Annual mean of one year simulation results
- Figure a)->d): baseline aircraft->30%->50%-90%
- Hybrid electric aircraft tends to form contrails at higher altitude

Conclusions

- The operational flexibility of hybrid-electric aircraft (HEA) offers opportunities in contrail avoidance.
- The HEA requires lower atmospheric temperatures to form contrails than the conventional aircraft.
- To avoid contrails at cruise altitude, a large fraction of electric power (more the 50% in the current study) is required.
- The reduction in PCC can be achieved locally.

Discussions and future work

- The current work doesn't not consider the actual flight routes, which will be included in the subsequent research
- The derivation of SAC is valid for hybrid electric system with battery. For other forms of hybridization, e.g., fuel cell, a different SAC should be derived
- In case of designing a HEA system for contrail avoidance, a proper power management strategy is required at the first place.

Thank you! Questions?

