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Introduction

• Aviation contributes 5% to the anthropogenic warming effects

• Contrails' effects are short but large

• Operational flexibility of parallel hybrid electric concept provides possibility to 

reduce contrail formation in contrail-sensitive regions

Parallel architecture

Grewe et al, 2017
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Baseline aircraft/engine

• Airbus A320neo type

• CFM LEAP-1A engine

• Technology level 2030 for electric system

• Cruise condition with given thrust

van Holsteijn et al, “Finding the Operating Limits and Optimal Configuration of an Electrically Assisted Turbofan”, 

ASME TurboExpo 2020, Sep 2020. 

Parameter: 2030

Battery energy density 600 Wh/kg

Maximum electric motor 

efficiency

97.5%
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Methodology overview

Hybrid electric aircraft (HEA):

• Turbofan engine

• 2030 battery technology

• Power management strategy

Derive Schmidt Appleman

Criterion (SAC) for HEA

Calculate potential contrail 

coverage (PCC) vs. hybridization 

Analyze changes of PCC by 

HEA:

• Local effects

• Climatological effects

• Seasonal effects

EMAC/CONTRAIL submodel*

Inputs

Results 

Earth system model (EMAC)**:

• Horizontal grid of 310 km

• Vertical resolution of 1 km

• Time step 12 mins

*supplement of Grewe et al., 2014

**Jöckel et al. 2010
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Derivation of Schmidt Appleman Criterion 

for HEA

• 𝐹 ∙ 𝑉 = η𝑘 ∙ ሶ𝑚𝑓 ∙ 𝑄 + η𝐸 ∙ 𝑃𝐸

• 𝐺 =
𝑐𝑝𝑝𝑎

𝜀

𝑅∙𝐸𝐼𝐻2𝑂

𝑅∙ 1−η𝑘 𝑄+(1−𝑅)(1−η𝐸)𝑄𝐸
0

• 𝑅 ≔
ሶ𝑚𝑓

ሶ𝑚𝑓𝑚𝑎𝑥
, 𝑄𝐸

0 ≔ 𝑄( Τη𝑘 η𝐸)

Kerosene Electricity

Variable Value Variable Value

Baseline propulsion efficiency (η𝑘) 0.4 Water emission index (EIH2O) 1.25

Lower heating value (Q), MJ/kg 43.2 Molar mass ration of water vapor and dry 

air (ε)

0.622
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Threshold of contrail formation by SAC at 250 hPa

Pure electric 

propulsion

Pure kerosene 

propulsion

• η𝐸 is the efficiency of the electrical powertrain

• The slope (G) decreases as increasing the electrical power

• The temperature threshold (Tmax) of HEA to form contrails reduces as increasing the 

electrical power

• In most situations, a large percentage of electric power is required for contrail avoidance

𝜼𝑬 reduces
𝜼𝑬 reduces
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Local changes of potential contrail coverage 

(PCC)

• At FL300, 50% hydration: the reduction in PCC is at 30N and 40S and localized

Local reduction of PCC

Baseline 50% electric power
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Climatological effects on PCC

• Annual mean of one year 

simulation results

• Figure a)->d): baseline 

aircraft->30%->50%-90%

• Hybrid electric aircraft tends 

to form contrails at higher 

altitude

Baseline

30% electric propulsion

50% electric propulsion 90% electric propulsion
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Conclusions

• The operational flexibility of hybrid-electric aircraft (HEA) offers opportunities 

in contrail avoidance.

• The HEA requires lower atmospheric temperatures to form contrails than the 

conventional aircraft.

• To avoid contrails at cruise altitude, a large fraction of electric power (more 

the 50% in the current study) is required. 

• The reduction in PCC can be achieved locally. 
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Discussions and future work

• The current work doesn’t not consider the actual flight routes, which will be 

included in the subsequent research

• The derivation of SAC is valid for hybrid electric system with battery. For 

other forms of hybridization, e.g., fuel cell, a different SAC should be 

derived

• In case of designing a HEA system for contrail avoidance, a proper power 

management strategy is required at the first place.
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Thank you!

Questions?


