

Aerodynamic Investigation of the flow in a Turbine Rear Structure

Valentin Vikhorev, Valery Chernoray

Chalmers University of Technology, Gothenburg, Sweden GKN Aerospace Engine Systems, Trollhättan, Sweden

ACARE Goals for 2050:

- 1) 75% reduction in CO₂ emissions
- 2) 90% reduction in NOx emissions
- 3) 65% reduction of the perceived noise

compared to values of the year 2000

Turbofan engine

Structural support

To connect the rear engine mounts with the shaft bearings

Aerodynamic purpose

To convert the outlet flow from the low-pressure turbine to the axial flow

"Performing maintenance on a 737-800 General Electric CFM56" by Reggie Mitchell, 2018, retrieved from https://www.flickr.com/photos/103738927@N06/42673913800

"Performing maintenance on a 737-800 General Electric CFM56" by Reggie Mitchell, 2018, retrieved from https://www.flickr.com/photos/103738927@N06/42673913800

"Performing maintenance on a 737-800 General Electric CFM56" by Reggie Mitchell, 2018, retrieved from https://www.flickr.com/photos/103738927@N06/42673913800

LPT-OGV facility

Low-speed large-scale 1.5 stage LPT-OGV facility

Engine-realistic flow conditions provided by lowpressure turbine

Engine-representative Reynolds number up to 600,000

Cost-effective

High repeatability, long time runs

Test objects and operating conditions

Re

Experimental methods

Flow visualization

Surface oil-film visualization

Johnson I. "Experimental Aerothermal Study on Internal Jet Engine Structures", Licenciate thesis, 2020

Flow visualization

Oil-film visualizations on a thick OGV (Suction side)

Flow visualization

Oil-film visualizations on a thick OGV (Suction side)

Flow separation in the hub-suction side corner is the main source of pressure losses

Inlet plane measurements

-15.0

Inlet plane measurements

0.4

0.0

O, deg

c) Bump vane

7.5

-7.5

-15.0

Circumferentially averaged Inlet swirl angle

Inlet plane measurements

Circumferentially averaged Inlet swirl angle

The bump influences inlet conditions in the hub region

Outlet plane measurements

Wake comparison for the regular, thick and bump vanes

Outlet plane measurements

Wake comparison for the regular, thick and bump vanes

CFD predictions agree well with experimental results.

More loaded case: CFD predicts a bit too large separation around the hub region.

Outlet plane measurements

Wake comparison for the regular, thick and bump vanes

Thick vane: Slight increase in losses in the near-hub region

The mechanisms for the loss formation are similar for the regular and thick vanes

Outlet plane measurements

Wake comparison for the regular, thick and bump vanes

Bump vane:

The bump substantially influences pressure losses with additional region close to the hub even for the off-design cases

Ongoing work

Heat transfer measurements

Configuration with polygonal shroud

Influence of the manufacturing non-conformances (welds)

Configuration with leaned vanes

Configuration with different number of vanes

