

ENABLE•H2

Fuel tank sizing methodology for cryogenic hydrogen fuelled air transport

D. Nalianda

Lecturer in Gas Turbine Engineering & Technology WP1 Lead (Tech Evaluation) - ENABLEH2

P. Rompokos, A. Rolt, V. Sethi and X. Sun

Propulsion Engineering Centre, SATM Cranfield University

3RD ECATS Conference, 13 – 15 October 2020

This project has received funding from the EU Horizon 2020 research and innovation programme under GA n° 769241 SESSION VII Cryogenic fuels/electrofuels

2

lium closed-circuit for

Technology Evaluation

CONFIDENTIAL

Technology Evaluation

 D_2

tinsulation

LH₂

 Hydrogen liquefies at 20.3 K (-252.9°C) – storage vessels require cryogenic systems and sophisticated insulation techniques

Tank structure

- Cylindrical tanks with hemispherical cap ends •
- Dimensions, material and fuel storage properties ٠

Long Range concepts

External diameter Thickness of insulation

m_{fuel flow} m_{vent}

Mass of LH₂ extracted Mass of fuel vented (at time step)

Short- medium Range concepts

Modelling approach

Hydrogen mixture properties

- Inside the tank there is a mixture of liquid and • gaseous hydrogen at all times
- The mixture is at saturated conditions and ٠ considered homogenous

Heat transfer is based on:

- Tank dimensions •
- Insulation material ٠
- Fuel and ambient temperature ٠

CONFIDENTIAL

Mission level assessment

- Long range mission
- 2 hours ground hold before take-off
- Assumes no GH₂ is vented for pressure relief
- Tank wall sized to withstand maximum pressure difference
- Tank is oversized to compensate for the evaporated (unusable) LH₂

Conclusions

- Methodology to design and size cryogenic fuel tanks
- Consideration of pressure changes within the tank is critical to design
- Design must withstand maximum pressure difference cycles
- Tank oversized to compensate for evaporated LH₂ implications of considering boil-off

ENABLE•H2

Thank you !

WP1 Lead Devaiah Nalianda, CU Devaiah.Nalianda@cranfield.ac.uk

This project has received funding from the EU Horizon 2020 research and innovation programme under GA n° 769241