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 Aviation can reduce its climate impact by controlling its CO2-emission and non-CO2 effects, e.g. aviation-induced contrail-cirrus and ozone 
caused by nitrogen oxide emissions. One option is the implementation of operational measures which aim to avoid those atmospheric 
regions that are in particular sensitive to non-CO2 aviation effects, e.g. where persistent contrails form.

 Estimates on overall climate impact reduction from a one-day case study are presented relying on best estimate for climate impact 
information. Specific weather situation that day, containing regions with high contrail impact, results in a potential reduction of total 
climate impact, by more than 40%, considering CO2 and non-CO2 effects, associated with an increase of fuel by about 0.5%. 

 The climate impact reduction per individual alternative trajectory shows a strong variation and hence also the mitigation potential for an 
analyzed city pair, with mitigation gains showing robustness to use of a range of individual climate impact metrics.

Eco-efficient aircraft trajectories and climate impact mitigation

Robustness analysis
 Overall robustness analysis 

shows that identified 
alternative trajectories are 
robust under the selected set 
of climate impact metrics. 
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 Initial mitigation relies on contrails avoidance showing large 
mitigation gains, 18 pK/kg fuel, while NOx-induced effets in this
case study show about 8 pK/kg fuel.

 On that specific day (case study) 
climate impact can be mitigated by 
46% for an increase in fuel of 0.5%.
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 We present environmental and economic 
performance of aircraft trajectories for individual 
city pairs under different optimization criteria 
resulting in a set of distinct climate-optimized 
aircraft trajectories.

 We compare climate optimized trajectories to fuel 
optimal trajectories in order to provide an estimate 
of overall mitigation potential and gain associated 
with climate-optimized aircraft trajectories. 

 We evaluate the climate impact using a set of different climate impact metrics in order to assess robustness of proposed solutions. 

 Climate-optimized trajectories are presented with overall 
performance in terms of fuel efficiency and environmental 
efficiency by comparing the fuel-optimal solution with climate-
optimized solutions, , with, e.g. up to 40% climate impact
reduction associated with 0.5% fuel penalty (EFHK-GCLP).
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 Pareto fronts showing mitigation of climate impacts by avoidance
of contrails and reduction of NOx-induced warming and associated
fuel penalty for three city connections

   
  

Figure: Aircraft trajectories (top) Lulea-Gran Canaria (ESPA-GCLP, left), Helsinki-Gran Canaria (EFHK-GCLP, 
middle), Baku-Luxembourg (UBBB-ELLX, right): great circle (blue line), fuel-optimized trajectory (black line). 

Altitude profile: fuel optimal case (middle row) and climate optimized case with 0.5% additional costs (bottom
row) (see [4], Fig. 1]

Figure: Individual contributions to total climate impact (ATR20, pK) shown for individual mitigation trajectories allowing
fuel increase by 0.5%, 1%, 2% and 5% and fuel optimal (0%). (see [4], Fig. 2,3]

Figure
Pareto front on climate 
impact reduction vs. fuel 
increase [%] for different 
climate metrics: average
temperature response
(ATR), global warming
potential (GWP), global 
temperature potential 
(GTP), (see [4], Fig. 4). 

 

 

 
  

 

 

 
  Figure: Pareto front: change in climate impact versus fuel penalty, 1-day case

study in Europe (18 Dec 2015, traffic sample, 2000 routes) and individual 
climate impacts comprising CO2 and non-CO2 (see [4], Fig. 5].

Figure: Flowchart of aircraft trajectory management using ATM4E 
algorithmic environmental change functions (aECF) concept, with 

elements newly introduced by ATM4E in green (see [2], Fig. 2).
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