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Abstract

The concept of aerodynamic formation flight, also known as aircraft wake-surfing for efficiency (AWSE), allows the follower aircraft to utilize the energy of the leader aircraft’s
wake vortex, which can result in rich benefits as long as the formation is perpetuated successfully along the segment between Rendezvous Start Point (RSP) and Separation
End Point (SEP). The follower’s mission fuel requirements therefore depend on the success of formation execution, increasing the level of fuel planning uncertainties.
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A conventional fuel planning strategy, that does not take anticipated fuel savings due to AWSE into account, will ensure a follower to complete the mission in the case of a
formation failure. From a long-term perspective however, this strategy might result in high amounts of excess fuel and unnecessary high fuel consumption. A fuel planning
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strategy, which takes the expected AWSE-induced fuel savings into account, might provide a significant potential of fuel savings due to a reduced take-off mass.

An analysis is presented in [1] that quantifies the savings potential regarding fuel and direct operating costs (DOC) of a flight planning procedure that fully includes the

anticipated benefits induced by AWSE, balancing them with the additional expenses to be expected from a formation failure. These expenses essentially arise from a detour
for a re-fueling stop along the route, which is optionally scheduled according to an AWSE-adapted variant of the established Decision Point Procedure (DPP) [2].
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Decision Point Procedure adapted to AWSE

Subject of investigation are the two fuel components Trip Fuel (TF) and Contingency Fuel (CF). Further fuel
components are added in form of an allowance. A conventional fuel planning instructs the operator to calculate
the required TF and charge it with a minimum CF share of 5%. The application of DPP allows the operator to
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The optional re-fueling stop has been shown to be feasible at almost neutral cost regarding fuel consumption, but its DOC-wise assessment was found to be highly
disadvantageous. This raised the question whether a flight planning according to AWSE-DPP might be conducted depending on the ratio of achievable values of profit and loss
and the expected benefits from a long-term perspective. Furthermore, it was asked whether a slight adjustment in routing towards available ERAs along the track might affect
this ratio favorably. We investigate these questions for a statistically significant meteorological setting and presumed levels of success probability regarding AWSE.
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destination ADES, according to Eq. (1). Finally, the operator selects the respective higher value according to Eq.
(3). The adaption of DPP includes a full consideration of anticipated AWSE-benefits by Eqg. (1), referred to as
schedule (SDL), and a full neglect of AWSE-benefits by Eq. (2), referred to as diversion (DIV).
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|. A reference route, based on a wind optimized formation geometry [3], is partitioned
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into percentual fragments of air distance Su;-py , Whereas each fragment is
representing a DEC. Offside the track, additional DECs are derived and respectively
connected to the two closest fixpoints RSP, SEP or ADES. Each combination of DEC and
suitable ERA is a designated element of search space

Conventional and AWSE-DPP fuel scenarios are derived and assigned to each search
space element, referred to as protected and unprotected action, respectively

Each protected and unprotected action is evaluated with regard to formation success
and formation failure in terms of fuel consumption and flight time

DOC are derived according to [4], the expected expense is derived by weighting with
assumed values of formation success probability P(A) and failure probablity P(B). The

margin between unprotected and protected expected expense is denoted by @y
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