Impact of Alternative Jet Fuels on **Aircraft Emissions in Cruise: Results from the ECLIF2/ND-MAX aircraft campaign**

Daniel N. Sauer¹, Hans Schlager¹, Bruce Anderson², Patrick LeClercq³, Christiane Voigt¹, Tiziana Bräuer¹, Valerian Hahn¹, Christopher Heckl¹, Stefan Kaufmann¹, Richard Moore², Monika Scheibe¹, Tobias Schripp³, Michael Shook², Kenneth L. Thornhill⁴, Edward Winstead⁴, Luke Ziemba²

- (1) Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
- (2) NASA Langley Research Center, Hampton, VA, U.S.A.
- (3) Deutsches Zentrum für Luft- und Raumfahrt, Institut für Verbrennungstechnik, Stuttgart, Germany
- (4) Science Systems and Applications, Inc., Hampton, VA, U.S.A.

ECLIF/ND-MAX

<u>Emission and Climate Impact of Alternative Fuels</u> **N**ASA/**D**LR **M**ulti-Disciplinary **A**irborne E**x**periment

Testing the effectiveness of mitigation approaches using alternative jet fuels

- How are contrails and climate affected by fuel composition, fuel physical and chemical properties, fuel oxidation, and combustion system performance?
- How do alternative jet fuels affect particle and gas emissions in cruise conditions?

Overall ECLIF objective

Study effects of fuel aromatics content and chemical structure on emissions.

ECLIF/NDMAX fuel strategy

• Blends of sustainable HEFA fuel with Jet-A1

• Similar aromatics content

but different chemical structure

70% Ref4 -30% HEFA

- What is the link between soot emissions and contrails?
- Can alternative aviation fuels help mitigate the aviation-induced radiative forcing and its forecasted increase?

Measurement strategy

ECLIF2/ND-MAX was the second of two **field experiments** in the framework of ECLIF to sample **emissions** and **contrail** ice particles behind the DLR A320 Advanced Technology Research Aircraft (D-ATRA) in cruise burning different alternative jet fuels.

Both aircraft were based at Ramstein Airbase, Germany in Jan/Feb 2018 and the sampling was mainly performed in race-track patterns in restricted airspace over northern Germany. Typical distance to lead aircraft was 3-20nm.

- Total of 7 flights behind ATRA, (~33h hours)
- 1 survey flight to sample emissions from A320-class aircraft with new, low-emission engines
- \rightarrow ~750 successful plume encounters at various speeds altitudes with and without contrails

Particle number emission index

 \rightarrow Particles emitted

Aerosol, trace gas and cloud particle instrumentation onboard the NASA DC8

Naphtalenes [mass%]:

An extensive payload for measurement of aerosol microphysical and chemical properties was installed on board the NASA DC8.

Instruments for particle emissions (selection): Various condensation particle counters with **different** size cutoffs, some behind a heated sample line (thermodenuder) to evaporate volatile components → non-volatiles as proxy for soot emissions

Contrail ice particle measurements: FastFFSP on 62° port on top of fuselage, CAPS, CDP, CAS-DPOL, 2D-S on wings.

Trace gas measurements (selection):

 δt_{ha} $\delta t_{\rm CO_2}$

 δt_N

 α : H/C ratio of the fuel $[CO_2]$: mixing ratio of CO_2 n_x particle number concentration CO_2 and n_x are determined as integrated, background subtracted peak areas.

Analysis following Moore et al 2017

CO₂: Picarro CRDS instrument (airborne) $NO_v:SO_2$, H_2SO_4 , Formic Acid: CIMS

Correlations of emitted particle sizes

Fraction of non-volatile particles with D>80nm:

measurements \rightarrow effect seems small.

-50

SAJF3

SAJF1

FuelType

SAJF2

Particle size distribution moves to smaller particles with higher H-content

Fuel Flow/ka h

References: Moore et al (2017) DOI:10.1038/nature21420 Lobo et al. (2015) DOI:10.1016/j.atmosenv.201 5.01.020 Schumann (1996), MetZ, 5, 4

SAJF3

Deutsches Zentrum für Luft- und Raumfahrt e.V.

Institut für Physik der Atmosphäre http://www.dlr.de/ipa