

ONERA

THE FRENCH AEROSPACE LAB

Parametric study of Contrails formation

<u>E. Montreuil</u>, W. Ghedhaïfi and E. Terrenoire emmanuel.montreuil@onera.fr

Outlines

- 1. Contrails issue
- 2. Objectives
- 3. Contrails birth description
- 4. Models description
- 5. Aircraft configuration
- 6. Results
- 7. Conclusion

Contrails issue

Objectives

The main goal of these studies is to contribute to reduce the environmental impact of contrails and aircraft emissions.

Simulation tool

- Improving the characterization and prediction of macroscopic and microscopic properties of contrails
- Developing strategies for technological and operational mitigation

Positioning

Study of contrails forming mechanisms, in the near-field of the aircraft

Objectives

- 3D spatial CFD simulation with code CEDRE of ONERA
- Development of a multi-physics simulation tool:
 - Aerodynamics
 - Plume's chemistry
- ➤ Coupling processes

- Microphysics
- Taking into account a realistic geometry of a commercial aircraft

Contrails birth description

- Composition (fuel, engines)
- Flow rate (engines thrust)

- Wing airfoil
- Wing loading distribution

- Engine position
- Wing span

Models description: Aerodynamics, Gas-phase chemistry and microphysics

Aerodynamic models

- An unstructured Compressible Navier-Stokes solver
- Reynolds Averaged Navier-Stokes Approach
- Turbulent model : k-A SST

Chemical kinetics scheme

- Complex gas phase chemical reactions mechanism
 - 23 species (SOx, NOx, HOx, COx)
 - ➢ 60 reactions

Microphysics processes

- Particles transport using an Eulerian approach
- Soot activation by adsorption of H₂SO₄ and SO₃ molecules
- **Condensation/Evaporation** of vapor water onto soot particles:
 - Evaluation of the Condensation/Evaporation rate
 - Taking into account the Kelvin effect

Aircraft configuration: Common Research Model+ (CRM)

- ✤ An aircraft representative of a B777 (~60 m wingspan);
- A full configuration (wing, fuselage, HTP, VTP) but a flow through nacelle

Double core flow engine

(a) Original Through Flow Nacelle of the CRM

(b) Internal engine designed

The bypass ratio of the designed engine is of 12.

\blacktriangleright Nearly 1 km; 590 m \blacktriangleright Corresponding to 4.5 s.

AoA set to 2.75°

Domain extension behind the

wingtip (wingspan b \sim 60m):

Computational domain, initial and Boundary conditions

Ζ

X

590 m

Results: Jet / Vortex interaction

* Theoretical distance between the two vortices \sim 47.1 m

In the present case, distance ~ 45.4 m

Results: Gas-phase chemistry

H₂SO₄ and SO₃ mass fraction fields downstream of the aircraft

Case #1 RH = 41% OAT = 223.15K

Case #2 RH = 0% OAT = 223.15K Case #3 RH = 19% OAT = 230.15K

ONERA

but restories astationaris Las

Results: Schmidt-Appleman criterion

Schmidt-Appleman criterion

**

A boolean-like

ONERA

but restaria anticipateria i.e.

ECATS 2020, SESSION II - Climate impact and mitigation concept

Results:

14

Contrails formation

ONER.

but restaria ateriataria La

Conclusions

- Achievement of a multiphysics contrails formation simulation tool:
 - A 3D RANS spatial simulation in the near field taking into account aerodynamic, gas-phase chemistry and microphysics interaction with a complete aircraft geometry
- Mesh refinement procedure that allows to recover the main feature of the vortex system downstream of the wake and the hot jet
- First comparison between 3D simulation and Schmidt-Appleman criterion for contrails formation

Perspectives

16

- Study the influence of the aircraft geometry issues such as the engine position:
 - the results show some effects in the jet/vortex dynamics but it is not clear to quantify how it affects the contrails formation.
- Inclusion of volatile-particle microphysics;
- Other activation pathways through soot-vapor interactions could also be addressed including the effect of organic compounds and the oxidation of soot-surface functional chemical groups;
- ZDES numerical approaches are currently assessed in order to evaluate the gain regarding contrails formation.

Thanks a lot for your attention...

Picture of a « numerical contrail » produced by CFD CEDRE

Models description: principles

Engine emissions

Chemical processes

Models description: principles

Microphysics processes

