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+¥ Motivation

« Aviation causes approximately 5% of the total anthropogenic
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global warming, including CO, (<50%) and non-CO, effects 0 R —
(>50%) from NOXx, water vapor, contrails and direct aerosols [1]. °
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« Aviation’s climate impact (specifically non-CO, effects)
depends on geographical location, altitude and time

of aircraft »¥ CPM development approach

« Non-CO, climate impact of aviation emissions varies
with actual meteorological situation, described by
atmospheric chemistry and physics.

« An interactive approach between emissions, routing

« An overview of the climate propulsion model (CPM)
development approach is provided in the figure below.

network and atmosphere will be used in this research. -
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