A Nation-wide Assessment of Particle Number Concentrations from Commercial Aircraft Emissions in the United States

Sarav Arunachalam¹, Jiaoyan Huang¹, Lakshmi Pradeepa Vennam¹, Ben Murphy², and Francis Binkowski¹ ¹Institute for the Environment, University of North Carolina at Chapel Hill ²U.S. Environmental Protection Agency

3rd ECATS Conference, Virtual October 13 – 15, 2020

Opinions, findings, conclusions and recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of ASCENT sponsor organizations.

Particle modes in CMAQ

Current CMAQ uses uniform PSD in all emission sectors

	Original				Updated			
mode	Mass fraction		D _{gv} (m m)	sg	Mass fraction	D _{gv} (m m)	sg	
Aitken	EC/OC/NCOM	0.001	0.030	1.7	0.10	0.060	1.7	
	Other	0.000	0.000					
accumulation	EC/OC/NCOM	0.999	0.300	2.0	0.90	0.280	1.7	
	Other	1.000	0.300					

Nolte et al., 2015 GMD

However, this uniform setting of PSD from emissions might not be appropriate for all sources

See Winijkul et al., 2015, Atmos Environ and Murphy et al, 2017, AAAR

PSD: Particle Size Distribution

Number concentrations of ultrafine particles from LTO emissions

LAX

BOS

Hudda et al., 2014, 2016

Recent studies indicate that number concentrations of ultrafine particle significantly increase due to LTO activity in LAX, BOS, AMST, Rome

4- to 5-fold increase to 8-10 km downwind in LAX

1.33- to 2-fold increase to 4-7.3 km downwind in BOS

Motivation

PSD of aircraft emissions Non-volatile PM (nvPM): PEC Volatile PM (vPM): PSO4, POC

Reference	Species	Method	UFP	Accumulation	GSD
			GMD (nm)	GMD (nm)	
Petzold et al., 1999	Black Carbon	Cruise tail Plume	25-35 UFP	150-160	1.55-1.87
Kinsey et al., 2010	Total number	Surface Plume	10-35 UFP		1.2-2.3
APEX 1-3					
Herndon et al., 2008 ES&T	Total number	Surface Plume			
Keuken et al., 2015 AE	Total number	Surface Plume			
Wey et al., 2006 APEX	Total number	Surface Plume	15-40 UFP		
Peck et al., 2012 JEGTP	Soot and volatile	Surface Plume with	15 Nucleation		
		dilution	35 soot		
Onasch et al., 2009	Soot and volatile	Surface Plume	20	100	
AEDT preparation guide*	NA		5-20 UFP vPM		
			40 UFP nvPM		
Our study	Total		20 UFP vPM	150	1.5-1.6
			40 UFP nvPM		

*based on Herndon et al., 2005, AST; Lobo et al., 2007, JPP; Timko et al., 2010, JEGTP

Emission split factor of Aitken:Accumulation from aircraft emission = 91.8 : 8.2 %. What is the effect of this new split on $PM_{2.5}$ mass and number near airports in the US?

Objectives

Goal

To investigate the changes of PM characteristics in the atmosphere due to PSD changes from aircraft emissions near major airports in the U.S.

Objectives

- To quantify changes in Aitken mode number concentrations and PM_{2.5} mass
- To investigate changes in deposition, heterogeneous chemistry, and partitioning of gas-aerosols
- To determine shifts in output PSD and chemical composition

Impacts

New knowledge on aircraft attributable PM in the context of recent field measurement campaigns

WRF-SMOKE-CMAQ 36 km 2005

- Develop a new module: ACAERO_EMIS
 - Read particle emissions from a specific source sector (i.e. aircraft emissions) separately
 - Re-assign different emission split factors, GMD and GSD for different species
- Merge with emissions from all other sources to create CMAQ-ready inputs
- Model three CMAQ scenarios
 - Nonaircraft emissions, base, sensitivities

Approach annual scenarios	Blue indicates the difference between background and base scenarios Red indicates the difference between base and sensitivity scenarios Base – nairc : aircraft contribution [Traditional] Sens – nairc : aircraft contribution [New] Sens – base : PSD change in aircraft emissions [IMPACT] nvPM: PEC, vPM: PSO4, POC					
	Emission split factor	GMD (nm)	GSD	Emission data		
non-aircraft (no-airc)	<i>EC/OC/NCOM</i> UFP: 0.1 Accumulation: 99.9 <i>OTHER</i>	<i>EC/OC/NCOM</i> UFP: 30 Accumulation: 300 <i>OTHER</i>	<i>EC/OC/NCOM</i> UFP: 1.7 Accumulation: 2.0 <i>OTHER</i>	All emissions without aircraft emissions		
	UFP: 0 Accumulation: 1	Accumulation: 300	Accumulation: 2.0			
Base (base)	<i>nvPM</i> UFP: 0.1 Accumulation: 99.9 <i>vPM</i>	<i>nvPM</i> UFP: 30 Accumulation: 300 <i>vPM</i>	<i>nvPM</i> UFP: 1.7 Accumulation: 2.0 <i>vPM</i>	All emissions and aircraft emissions in separate files		
	UFP: 0.1 Accumulation: 99.9	UFP: 30 Accumulation: 300	UFP: 1.7 Accumulation: 2.0			
Sensitivity (sens, same as vPM_UFP_20nm- sens_6 in Table 2)	<i>nvPM</i> UFP: 91.8 Accumulation: 8.2 <i>vPM</i> UFP: 91.8	<i>nvPM</i> UFP: 40 Accumulation: 150 <i>vPM</i> UFP: 20	<i>nvPM</i> UFP: 1.6 Accumulation: 1.87 <i>vPM</i> UFP: 1.5	All emissions and aircraft emissions in separate files		
	Accumulation: 8.2	Accumulation: 150	Accumulation: 1.87			

• CMAQ v5.0.2 simulations (CB05_tump with AE06) for annual 2005 with 2-week spin-up

Post-process CMAQ outputs to assess monthly, seasonal and annual patterns

Annual aircraft emission rates in North America

- Only landing and take-off (below 3000 ft) includes climb out, approach, taxi, and idle
- Estimated from Aviation Environmental Design Tool (AEDT) based on the aircraft locations
- NOx, SO2, VOC, CO + 3 directly emitted components of PM_{2.5}

Aircraft-attributable PM_{2.5} Impacts

Mass concentrations change < 5% from changing of aircraft PSD, the results are similar to previous studies (Nolte et al., 2015 and Elleman and Covert (2010)

90°W

80°W

0.03 0.06 0.09

Aircraft-attributable UFP Impacts

Number concentration in accumulation mode does not change much

Aircraft-attributable PM_{2.5} Impacts – Effect of New Approach at airports

Airports are located in the center

UFP number concentrations significantly increase in airport grid-cells Increases of UFP number concentrations in these three airports vary, and this is due to different physical and chemical processes

Conclusions

- Aircraft contribution of ambient PM_{2.5} mass can be up to ~0.0023 µg m⁻³ in airports
- Changes in PSD of aircraft emissions based upon aircraft engine measurements show new information on AQ impacts of aviation
 - In airports, PM_{2.5} mass decrease (up to 25%) and UFP number concentrations increase (up to 5x)
 - Overall PM_{2.5} mass slightly increase (0.00016 µg m⁻³) domain-wide

Implications and Future work

- CMAQ modeled estimates using our new approach show some consistency with recent measurements
- Impacts of particle size changes on CMAQ chemistry
- Additional processes such as secondary organic aerosol new particle formation from vapors

Acknowledgement

- This work was funded by the US Federal Aviation Administration (FAA) Office of Environment and Energy as a part of ASCENT Project 19 under FAA Award Number: 13-C-AJFE-UNC
- Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the FAA or other ASCENT Sponsors

References

- Nolte, C. G. and Appel, K. W. and Kelly, J. T. and Bhave, P. V. and Fahey, K. M. and Collett Jr., J. L. and Zhang, L. and Young, J. O., Evaluation of the Community Multiscale Air Quality (CMAQ) model v5.0 against size-resolved measurements of inorganic particle composition across sites in North America, Geo. Mod. Dev., 2015, 8, 2877-2892.
- Lobo, P., D. E. Hagen, P. D. Whitefield and D. J. Alofs. "Physical characterization of aerosol emissions from a commercial gas turbine engine." Journal of Propulsion and Power, 2007, 23, 919-929.
- Petzold, A., A. Döpelheuer, C. A. Brock, and F. Schröder, In situ observations and model calculations of black carbon emission by aircraft at cruise altitude, J. Geophys. Res., 1999, 104(D18), 22171–22181
- Timko, M. T.; Onasch, T. B.; Northway, M. J.; Jayne, J. T.; Canagaratna, M. R.; Herndon, S. C.; Wood, E. C.; Miake-Lye, R. C.; Knighton, W. B. Gas turbine engine emissions – Part II: Chemical properties of particulate matter. Journal of Engineering for Gas Turbines and Power, 2010, 132, 061505.
- Herndon, S.C., Onash, T.B., Frank, B.P., Marr, L.C., Jayne, J.T., Canagaratna, M.R., Grygas, J., Lanni, T., Anderson, B.E., Worsnop, D., and Miake-Lye, R.C. Particulate emissions from in-use commercial aircraft, Aerosol Sci. Tech., 2005, 8, 799-809
- Woody, M., Haeng, B., Adelman, Z., Omary, M., Fat, Y., West, J.J., Arunachalam, S., 2011. An assessment of Aviation 's contribution to current and future fine particulate matter in the United States. Atmos. Environ. 45, 3424–3433.
- Hudda, N., Fruin, S.A., 2016. International Airport Impacts to Air Quality: Size and Related Properties of Large Increases in Ultrafine Particle Number Concentrations. Environ. Sci. Technol. 50, 3362–3370. doi:10.1021/acs.est.5b05313.
- Hudda, N., Gould, T., Hartin, K., Larson, T. V., Fruin, S.A., 2014. Emissions from an international airport increase particle number concentrations 4-fold at 10 km downwind. Environ. Sci. Technol. 48, 6628– 6635. doi:10.1021/es5001566