3rd ECATS Conference

13 – 15 October 2020, Online

Time-resolved Aircraft Dispersion Modelling

Ulf Janicke Janicke Consulting, Germany, www.janicke.de

Emmanuel Montreuil, Weeded Ghedhaifi, Etienne Terrenoire ONERA, France, www.onera.fr

VIAT R 3rd ECATS Conference 2020 Time-resolved aircraft dispersion modelling, U. Janicke et al.

Simple example

- Line source near ground oriented east-west
- Constant NOx emission rate
- First hour wind from South
- Second hour wind from East
- Wind speed 2 m/s at 10 m height, stable stratification
- Mean concentration in hour 1 and hour 2

Time-resolved dispersion modelling

More realistic description of transport dynamics

In particular for situations with varying wind conditions and at larger source distances (transport time ~> averaging time)

Realistic description of time-varying emissions

In particular on a sub-hour scale

\rightarrow 4 examples

Example 1: aircraft at take-off (Düsseldorf/DE)

LASPORT (LASAT, Lagrangian particle model according to VDI 3945 Part 3)

AVIAT R 3rd ECATS Conference 2020 Time-resolved aircraft dispersion modelling, U. Janicke et al.

Example 1: aircraft at take-off (Düsseldorf/DE)

VIAT R 3rd ECATS Conference 2020 Time-resolved aircraft dispersion modelling, U. Janicke et al.

Example 2: aircraft at taxiing (Salzburg/A)

LASPORT (LASAT, Lagrangian particle model according to VDI 3945 Part 3)

AVIAT 3rd **ECATS Conference 2020** Time-resolved aircraft dispersion modelling, U. Janicke et al.

Example 2: aircraft at taxiing (Salzburg/A)

Setup following Vorage et al. in: Gefahrenstoffe, 79 (2019)

ATTR 3rd ECATS Conference 2020 Time-resolved aircraft dispersion modelling, U. Janicke et al.

Example 3: aircraft at approach (Zürich/CH)

Example 3: aircraft at approach (Zürich/CH)

LASPORT (LASAT, Lagrangian particle model according to VDI 3945 Part 3)

AVIAT R 3rd ECATS Conference 2020 Time-resolved aircraft dispersion modelling, U. Janicke et al.

Example 4: Complex flow fields (CAEPport)

CFD model CEDRE (ONERA)

\rightarrow Talk by Emmanuel Montreuil in this session

AVIAT R 3rd ECATS Conference 2020 Time-resolved aircraft dispersion modelling, U. Janicke et al.

Time-resolved aircraft dispersion modelling

- Study of dynamical effects in the context of aircraft emissions
- Detailed comparison with measurements in sub-minute resolution
- In particular: ultrafine particle concentrations; dynamics of wing vortex /exhaust interactions
- \rightarrow Talk by Sarav Arunachalam in this session

Standardisation by suitable parametrisation, also applicable to stationary and simpler dispersion models

\rightarrow AVIATOR (aviatorproject.eu)

 \rightarrow Talk by Devora Hormigo in this session

Thank you!

Measurement Instruments and Modelling

Measurement Instruments. Aircraft Engine Probe, Management and Engine Understanding

Management, Airline Involvement, Madrid Airport Detailed Sensor Study and Supporting Aircraft Engine Measurements

AVIATOR is funded by €5.2m from Horizon 2020, €0.5m from inkind contributions, and a further €391,000 from the National Research Centre of Canada

Modelling – Plume, Local and Regional, Measurement Kit, 2 Further Airports and Different Locations

