An Integrated Modelling Approach for Climate Impact Assessments in the Future Air Transportation System – Findings from the WeCare Project

Robin Ghosh*, Kai Wicke*, Katrin Kölker*, Ivan Terekhov*, Florian Linke*, Malte Niklaß*, Benjamin Lührs**, and Volker Grewe***

Knowledge for Tomorrow

* German Aerospace Center (DLR), Air Transportation Systems

** Hamburg University of Technology (TUHH), Institute of Air Transportation Systems

*** German Aerospace Center (DLR), Institute of Atmospheric Physics

Part 1 quantity structures and timing & Part 2 potentials of mitigation strategies

Future scenarios

Simulating quantity structures & timing:

- Modelling growth on city pair level
- evolution of the global ATS over time
- System's inertia with respect to decision making or policy planning

Potentials

Assessment and quantification of mitigation potentials of measures:

- Operational
- Technological
- Policy

Why are we designing the AIRCAST environment?

AIRCAST quantifies decision scenarios for aviation

Global passenger & air traffic forecasts on city pair level

Network and fleet forecasting combined

Assessing global aviation climate impacts

Strategy development: goals, growth & technology

4-Layer Philosophy

Overview of possible Input quantitative Scenarios

Randers Scenario – CITYCAST model

Network initialization: ATS city pair dimensions

Air passenger demand forecasting – 2 Steps

exogenous socio-economic scenarios origin-destination demand network **TOPOLOGY-FORECAST PASSENGER-FORECAST** Evolution of the demand network topology over Evolution of the number of passengers on city pairs over time every five years time every five years first predicted time slice time slice 2050 first predicted time slice time slice 2050 cost quality of travel routes network new frequency technologies aircraft movements network travel time direct and indirect number of operating cost transfers trajectories network

Air passenger demand under Randers scenario

Simulation results: Demand Network Layer

- Which routes are possible/reasonable?
 - list of possible transfer airports (ca. 500 worldwide)
 - minimum segment distance
 - maximum number of transfers
 - maximum detour factor
- What are the probabilities for the choice of a certain route?

- Which routes are possible/reasonable?
 - list of possible transfer airports (ca. 500 worldwide)
 - minimum segment distance
 - maximum number of transfers
 - maximum detour factor
- What are the probabilities for the choice of a certain route?
- For all demand city pairs worldwide

- Which routes are possible/reasonable?
 - list of possible transfer airports (ca. 500 worldwide)
 - minimum segment distance
 - maximum number of transfers
 - maximum detour factor
- What are the probabilities for the choice of a certain route?
- For all demand city pairs worldwide

- Which routes are possible/reasonable?
 - list of possible transfer airports (ca. 500 worldwide)
 - minimum segment distance
 - maximum number of transfers
 - maximum detour factor
- What are the probabilities for the choice of a certain route?
- For all demand city pairs worldwide

Passengers on segments

Goal:

Deduce passenger volumes on segments worldwide

Deducing an aircraft movements network

 ..., because the portion of deployed aircraft sizes are a function of:

- segment distance
- passenger volume on segment
- aircraft sizes are abstracted in seat categories

Aircraft movements on segments by seat categories

How many flights are performed by which seat categories on which segments?

Market-size-range relation

WeCare Part 1: emission inventories (Randers scenario)

Simulation results: Trajectories Network Layer (DLR Module GRIDLAB)

Linke 2016

WeCare Part 2: assessment of eco-efficient flight trajectories

Simulation results: Quantification of mitigation potentials (DLR Module TOM)

Outlook

Create aircraft movements network with aircraft type and aircraft generation information (assumed BAU-scenario of new aircraft)

Trajectory network calculation for Randers-Scenario (interface has been already defined)

- to prepare a prototype input for further models
- to provide an ATS city pair "energy forecast" including the capability of modelling the introduction of hybrid and alternative energy concepts

Run whole chain on IF-scenarios: Create "scenario libraries"

Outlook: Aircraft movements network with aircraft generations

Outlook: World Fleet renewal & networks

city pair demand network 2012 connections > 100k PAX

Thank you for your attention.