

The aircraft emissions model: Future Aviation Scenario Tool (FAST)

Ling L. Lim, Bethan Owen and David S. Lee

Manchester Metropolitan University, UK

Overview

- Introduction to the FAST model
- Calculating aviation emissions
- Sample output: Case studies
- Future outlook

Introduction to the FAST model

- Global 3D GHG aircraft emissions model
- Developed in the late 1990s
- Maintained by MMU and currently funded by the UK Department for Transport
- One of three GHG model approved by ICAO-CAEP for CAEP analyses

Calculating cruise emissions

- PIANO aircraft performance tool
- Run for specific aircraft type → different combinations of altitude, mission distance, payload assumptions
- Provides cruise fuel burn based on aircraft type and operating conditions (altitude, speed, weight)
- Accounts for weight changes during flight due to fuel burn
- FAST uses operations data to match nearest PIANO mission distance and corrects cruise fuel burn

Case study: Comparison with other models

• Skowron et al., 2013

The summary of specifications of six aircraft inventories used in this study: AEDT, AEM, AERO2K, REACT4C, QUANTIFY and TRADEOFF.

Inventory	AEDT	AEM	AERO2K ^a	REACT4C	QUANTIFY	TRADEOFF
Year	2006	2006	2002	2006	2000	1992
Fuel (Tg year ⁻¹)	187	210	156	178	152	114
Distance (billion km year ⁻¹)	38.9	43.6	33.2	38.9	30.5	17.4
CO_2 (Tg year ⁻¹)	590	508	492	562	479	n/a
$NO_x(Tg(NO_2) year^{-1})$	2.72	2.99	2.06	2.33	1.98	1.61
Vertical spacing	1 km	500 ft	500 ft	610 m	610 m	610 m
Temporal resolution	Annual	Monthly	Monthly	Monthly	Monthly	Seasonal
Air traffic movements	Radar data,	Radar data,	Radar data,	Radar data,	OAG for schedule & AERO2K	OAG, scheduled
	OAG	OAG	BACK	OAG	for non-schedule traffic	data
Modelling tool	SAGE, BADA	AEM, BADA	AERO2K, PIANO	FAST, PIANO	FAST, PIANO	FAST, PIANO
an 1		and the second se	and the second second	and the second sec		

^a Based on civil aviation data only.

Case study: Comparison with other models

• Skowron et al., 2013

Absolute radiative forcings (in mW m⁻²) due to short-term O₃, CH₄-induced O₃, CH₄, stratospheric water vapour (SWV) and NO_x (net of all 4 components) for series of normalized aircraft inventories. The radiative forcings per unit emission of N (in mW m⁻² Tg(N) yr⁻¹) are presented in the brackets.

Inventory	Radiative forcings						
	Short-term O ₃	CH ₄ -induced O ₃	CH ₄	SWV	Net NO _x		
AEDT	14.3 (20.5)	-3.0 (-4.3)	-6.7 (-9.5)	-1.0(-1.4)	3.6 (5.2)		
AEM	13.8 (19.7)	-3.0 (-4.2)	-6.8 (-9.7)	-1.0(-1.5)	3.0 (4.2)		
AERO2K	11.5 (16.5)	-3.1 (-4.5)	-7.1 (-10.4)	-1.1 (-1.5)	0.2 (0.3)		
REACT4C	13.4 (19.2)	-3.1 (-4.4)	-7.0 (-10.0)	-1.1(-1.5)	2.3 (3.3)		
QUANTIFY	12.8 (18.3)	-3.1 (-4.4)	-7.0 (-10.0)	-1.1 (-1.5)	1.7 (2.4)		
TRADEOFF	13.1 (18.7)	-3.1 (-4.5)	-7.1 (-10.2)	-1.1 (-1.5)	1.8 (2.6)		

Case study: Modelling future emission scenarios

- Traffic demand forecast e.g. route level forecasts
- Fleet forecast how demand forecast will be met → aircraft types and sizes
- Technology assumptions rate of change of fuel burn efficiency and other aircraft/engine changes
- Future changes in fuel type rate of penetration of alternative fuel

Case study: Modelling future emission scenarios

Base year 2000, EU FP6 QUANTIFY (Owen et al., 2010)

Case study: Modelling future emission scenarios

A1

A2

EU FP6 QUANTIFY (Owen et al., 2010)

Case study: Simple mitigation

- EU FP7 REACT4C
- Cruise altitudes for aircraft types contributing > 1% to base case global fuel and distance flown → shifted upwards and downwards by 2,000 ft
- Example results from Søvde et al., 2014

Case study: Simple mitigation

Case study: CAEP/10 trends

- ICAO Assembly resolution A37-18: "assess the present and future impact and trends of aircraft noise and aircraft engine emissions"
- Each 3-year cycle, ICAO-CAEP MDG develops environmental trends in aviation → noise, LAQ, GHG
- CAEP/MDG aims to use latest input data and related assumptions
 - Demand forecast: FESG central/low/high to 2040 (extrapolated to 2050)
 - Fleet forecasts populated from Growth and Replacement database
 - Fleet-wide assumptions on Technical or Operational improvements for 9 scenarios
- CAEP-approved GHG models include AEDT (US), AEM/IMPACT (Eurocontrol/EASA) and FAST (UK DfT/MMU)

Case study: CAEP/10 trends

*Dashed line in technology contribution sliver represents the "Low Aircraft Technology Scenario." Note: Results were modelled for 2005, 2006, 2010, 2020, 2025, 2030, and 2040 then extrapolated to 2050.

Case study: ICAO global MBM

- Route-based adjustments investigated for GMBM
- Assessment uses state-to-state information on emissions derived from GHG inventories such as FAST
- Operator-based data are not usually retained in CAEP trends work but for the MBM work, these data are included

Case study: ICAO global MBM

This shows the basic premise of the scheme which uses CAEP/10 trends data for projected CO₂ emissions bounded by the high and low fuel efficiency scenarios

Case study: Linkages to other MMU models

Future outlook

- nvPM emission estimates to be developed this CAEP/11 cycle to model the impact of new ICAO-CAEP nvPM engine certification standard
- Inclusion of trajectory modules for ATM research
- Better communication between the inventory modellers and end user

Backup slides

CAEP/8 models comparison (2006 base year)

Inventory	Fuel (Tg)	CO ₂ (Tg)	NO _x (Tg NO ₂)	Distance (billion km)
FAST	178.3	562.2	2.33	38.9
AEDT/SAGE	187.0 (+4.9)	589.6 (+4.9)	2.72 (+16.7)	38.9
AEM	189.8 (+6.4)	598.4 (+6.4)	2.79 (+19.7)	
Aero2K	170.0 (-4.7)	536.0 (-4.7)		

* Number in brackets denote % difference compared to FAST [Source: CAEP/MDG working group]

Historical fuel use

Source: Lee et al., 2009

IEA vs inventories

IEA vs inventories

Aviation emissions scenarios

- NASA, CAEP-4/FESG for years 1992, 2015 and 2050 (IPCC, 1999)
- CONSAVE for years 2000, 2020, 2050 (Berghof et al., 2005)
- QUANTIFY for years 2000, 2020, 2050 (Owen et al., 2010)
- GIACC/4 for years 2006, 2012, 2016, 2020, 2025, 2026, 2036, 2050 (ICAO, no date)
- Lee et al. (2013) for years between 2006 and 2050

How good are the forecasts?

