Simulation of Air Traffic using Weather – based Climate Cost Functions – Feasibility Analysis

Green flights – Climate optimal flight trajectory
ECATS 2, November 2016, Athens, Greece

Tanja Luchkova, Malte Niklaß, Benjamin Lührs, Angela Schmitt, Christine Froemming, Christiane Voigt, Volker Grewe, Michael Schultz

Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)
German Aerospace Center

Institute of Flight Guidance

Dipl.-Ing. Tanja Luchkova
Department Air Transportation
Phone +49 (0) 531 295-3049
tanja.luchkova@dlr.de
Structure

➢ Introduction and research motivation
➢ Background
➢ Methodology and simulation
➢ First results of simulation scenarios
➢ Outlook
Introduction and research motivation (1)

Research Topics - Air Transportation

1. Data-/modell-based ATM Performance Assessment
2. Integrated Airport Management (performance based - PBAM)
3. Advanced Concepts in ATM
Introduction and research motivation (2)

Topic: Model-based ATM Performance Assessment
Key Performance Indicators: Emissions and Noise

Electrical Taxiing

Evaluate noise and emission reduction potential at BER and FRA as proof of concept

Context:
SESAR CleanSky
SGO
Introduction and research motivation (3)

Topic: Model-based ATM Performance Assessment

External Factors: Volcanic Ash Clouds

Task:
Assess the impact of volcanic ash avoidance scenarios on sector oriented

Context:
Internal Research
Introduction and research motivation (4)

Topic: Model-based ATM Performance Assessment

Key Performance Indicators: Emissions and Noise

Assessment of environmental impacts (noise, emissions) of new technologies developed in Clean Sky's ITD's at Airport level

Context:
EU Project

Current technology Aircraft (Reference)

Without Clean Sky

Selected technologies from ITDs

With Clean Sky

List of Clean Sky Conceptual Aircraft

Performances of technologies

Performances of aircraft

Environment impacts

Deltas

2000

2020 / 2020+ forecast (including SESAR)

Generic fleet inserted into traffic [scenarios]
Background

- Aviation related climate impact share today at about 5%
- How to reduce the climate impact not only in the area of non-CO2 components?
- Utilizing Weather information for Climate efficient and eco efficient future aviation - WeCare project
- The project focuses on three different areas:
 - Climate optimal routings
 - Cost benefit analysis of mitigation options
 - Demonstrable effects of air traffic
- Operational and technical measures considered to make air traffic more climate friendly

- GOAL: to assess the operational measures by exploiting the effect that the climate optimized trajectories has on the existing ATM by means of fast time simulation
Airport capacity

- Hourly throughput that an airport’s runways are able to sustain during periods of high demand
- Runway configuration

Airspace capacity

- Air traffic controller workload i.e. the mental and physical work done by the controller to control traffic
- Geometric and temporal criteria based upon the performance characteristics of the aircraft in

Weather conditions

Operational conditions
Methodology and simulation

- Analyzed day – extracted traffic North Atlantic operations only for 12/07/2012
- Optimized trajectories and air traffic data
 - Applied optimization:
 - Wind optimal (fuel)
 - Climate optimal agwp100 & atr20
 - Evaluation of the scenarios in fast time simulation tool includes:
 - The EUROCONTROL provides 24 hours traffic data (for research purposes only) for the baseline scenario which is used to compare with the optimized traffic scenario
 - The optimized traffic scenarios are exported in so6 format which is then imported in AirTOp for the feasibility analysis
Methodology and simulation

- AirTOp, a fast time simulation tool, is a new generation of gate to gate fast-time simulation platforms
- Applied airspace model
- Model based on EUROCONTROL’s DDR2 database and European AIS database (EAD)
- The model contains 1000 individual sector volumes including opening and closing schemes
Methodology and simulation
North Atlantic airspace

- Cooperation with NASA Ames regarding airspace
- Oceanic airspace received in a working and not commercial form (differs from FIR)
- East coast airspace not available (FAA)
Methodology and simulation
Simulation scenarios and evaluation metrics

- Baseline scenario 1391 flights
- Optimized scenario for the prototype data
- Optimized scenario all weather climate cost functions

The evaluation methodology focuses on the following metrics from the performed fast-time simulation scenarios:
- Traffic demand in different ATC sectors (only selected number of sectors will be evaluated for this project)
- ATC sector capacities and controller taskload
- Number of vertical movements in the ATC sectors
- Flight duration and total distance flown (as important parameters when measuring the controller workload)
Draft results
Traffic demand in one ATC sector for the baseline and prototype data

Reference scenario: XXX Airspace

Optimized scenario: XXX Airspace
Reference scenario: YYY Airspace

Optimized scenario: YYY Airspace
Reference scenario: YYY Airspace

<table>
<thead>
<tr>
<th>Rolling Period</th>
<th>EntryCount</th>
<th>WorkLoad</th>
<th>WorkDuration</th>
<th>AttitudeChangeCount</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00 - 01:00</td>
<td>00:02:05</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01:00 - 02:00</td>
<td>00:00:23</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02:00 - 03:00</td>
<td>00:02:50</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>03:00 - 04:00</td>
<td>00:02:18</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04:00 - 05:00</td>
<td>00:44:49</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>05:00 - 06:00</td>
<td>00:15:47</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>06:00 - 07:00</td>
<td>00:42:42</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07:00 - 08:00</td>
<td>00:12:12</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08:00 - 09:00</td>
<td>00:19:02</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09:00 - 10:00</td>
<td>00:18:21</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00 - 11:00</td>
<td>00:12:21</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 - 12:00</td>
<td>00:18:55</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00 - 13:00</td>
<td>00:12:55</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:00 - 14:00</td>
<td>00:02:23</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:00 - 15:00</td>
<td>00:02:55</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:00 - 16:00</td>
<td>00:08:38</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:00 - 17:00</td>
<td>00:00:54</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:00 - 18:00</td>
<td>00:03:42</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:00 - 19:00</td>
<td>00:01:24</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Optimized scenario: YYY Airspace

<table>
<thead>
<tr>
<th>Rolling Period</th>
<th>EntryCount</th>
<th>WorkLoad</th>
<th>WorkDuration</th>
<th>AttitudeChangeCount</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00 - 01:00</td>
<td>1</td>
<td>1</td>
<td>00:00:23</td>
<td></td>
</tr>
<tr>
<td>01:00 - 02:00</td>
<td>2</td>
<td>1</td>
<td>00:00:26</td>
<td></td>
</tr>
<tr>
<td>02:00 - 03:00</td>
<td>2</td>
<td>1</td>
<td>00:00:37</td>
<td></td>
</tr>
<tr>
<td>03:00 - 04:00</td>
<td>3</td>
<td>5</td>
<td>00:02:23</td>
<td></td>
</tr>
<tr>
<td>04:00 - 05:00</td>
<td>17</td>
<td>26</td>
<td>00:15:47</td>
<td></td>
</tr>
<tr>
<td>05:00 - 06:00</td>
<td>32</td>
<td>75</td>
<td>00:44:49</td>
<td></td>
</tr>
<tr>
<td>06:00 - 07:00</td>
<td>31</td>
<td>71</td>
<td>00:42:42</td>
<td></td>
</tr>
<tr>
<td>07:00 - 08:00</td>
<td>26</td>
<td>73</td>
<td>00:44:05</td>
<td></td>
</tr>
<tr>
<td>08:00 - 09:00</td>
<td>9</td>
<td>20</td>
<td>00:12:12</td>
<td></td>
</tr>
<tr>
<td>09:00 - 10:00</td>
<td>20</td>
<td>32</td>
<td>00:19:02</td>
<td></td>
</tr>
<tr>
<td>10:00 - 11:00</td>
<td>19</td>
<td>31</td>
<td>00:18:21</td>
<td></td>
</tr>
<tr>
<td>11:00 - 12:00</td>
<td>13</td>
<td>22</td>
<td>00:12:55</td>
<td></td>
</tr>
<tr>
<td>12:00 - 13:00</td>
<td>17</td>
<td>30</td>
<td>00:18:03</td>
<td></td>
</tr>
<tr>
<td>13:00 - 14:00</td>
<td>6</td>
<td>11</td>
<td>00:06:26</td>
<td></td>
</tr>
<tr>
<td>14:00 - 15:00</td>
<td>4</td>
<td>4</td>
<td>00:02:30</td>
<td></td>
</tr>
<tr>
<td>15:00 - 16:00</td>
<td>9</td>
<td>14</td>
<td>00:08:38</td>
<td></td>
</tr>
<tr>
<td>16:00 - 17:00</td>
<td>1</td>
<td>2</td>
<td>00:00:54</td>
<td></td>
</tr>
<tr>
<td>17:00 - 18:00</td>
<td>4</td>
<td>6</td>
<td>00:03:42</td>
<td></td>
</tr>
<tr>
<td>18:00 - 19:00</td>
<td>2</td>
<td>2</td>
<td>00:01:24</td>
<td></td>
</tr>
</tbody>
</table>
An example of the results showing the fluctuation in traffic demand through ATC sector occupancy graph.
Outlook and next steps

- The preliminary results have only included random sectors for the analysis
- The focus has been put on the change of the traffic demand and partly the workload/taskload
- The first results only include the optimized trajectories for the prototype data
- The scenarios with all weather optimized trajectories will include a detailed assessment on the controller workload/taskload as well as analysis on the total distances and NM flown
- The ideas on future analysis include assessment at TMA and airport level
Simulation of Air Traffic using Weather – based Climate Cost Functions – Feasibility Analysis

Green flights – Climate optimal flight trajectory
ECATS 2, November 2016, Athens, Greece

Tanja Luchkova, Malte Niklaß, Benjamin Lührs, Angela Schmitt, Christine Froemming, Christiane Voigt, Volker Grewe, Michael Schultz

Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)
German Aerospace Center
Institute of Flight Guidance

Dipl.-Ing. Tanja Luchkova
Department Air Transportation
Phone +49 (0) 531 295-3049
tanja.luchkova@dlr.de