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• High air traffic growth rates of    3
3 – 5 % per year.

• Measures required to reduce 
aviation climate impact to 
counteract this development

• Possible reduction through: 
• alternative fuels
• novel engine concepts
• modification of aircraft design
• different routing
• etc.

• Optimization of routes
(horizontally and vertically) wrt. 
the climate impact of CO2, H2O, 
and NOx emissions

and contrail-cirrus

Air traffic and climate change

DLR.de  •  Chart 2

Adaptation of flight profile for every 
weather situation =REACT4C

General routing changes:
e.g. “Flying lower for individual routes”
=CATS project

Lee et al., 2009
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Climate optimized routing by using climate cost functions

Climate cost function is 
given as number with 
units 
Kelvin per kg emission

Matthes et al., 2012
Grewe et al., 2014a,b
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Climate cost functions:
= Measure for climate impact of individual aviation emissions depending on          

emission location, emission altitude, and local emission time
 Depending on weather situation

 Aviation impacts investigated:
• Ozone, Methane + primary mode ozone, Contrails, Water vapour, CO2
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Climate change functions:
= Measure for climate impact of individual aviation emissions depending on          

emission location, emission altitude, and local emission time
 Depending on weather situation
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• Ozone, Methane + primary mode ozone, Contrails, Water vapour, CO2

Matthes et al., 2012
Grewe et al., 2014a,b



A B

What happens if an aircraft emits 
NOx at location A compared to location B?

Evolution of aircraft NOx at two different locations
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Frömming et al., 2011



EMAC-Symposium 14.-16. Februar 2012

Evolution of O3 [ppt] following a NOx pulse

A: 250hPa, 40°N, 60°W, 12 UTC B: 250hPa, 40°N, 30°W, 12 UTC
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Base model: 
 Community climate-chemistry model EMAC

AIRTRAC submodel for calculating CCFs:
 Chemistry:

 Nitrogen oxides, ozone, methane, ozone from methane changes, …
 Rain-out, 

 Micro-Physics
 Formation and spreading of contrails 
 Sedimentation, growth and sublimation of ice particles

 Radiation:
 Change in radiation caused by ozone, methane, contrails, water vapour
 Radiative forcing

 Metrics:
 Focus on both long-term and short-term effects
 GWP, GTP, ATR 

Modelling of the climate cost functions include
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Grewe et al. (2014)



Modelling overview: Grids and processes

Grewe et al.,GMD (2014)

• Climate-Chemistry Model 
• Locally confined emissions 
• Transport calculation with 

trajectories
• NMHC chemistry 
• Calculation of effects of 

NOx emissions on 
• Ozone
• Methane
• Primary mode ozone

• Calculation of the change 
in climate metrics 
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Representative weather patterns

Classification of weather pattern 
according to Irvine et al. (2013)
- 5 winter pattern 
- 3 summer pattern
- Jet location and strength largely 

differs

Summer

Wind speed m/s

Frömming et al. (2016)

Irvine et al. (2013)
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Climate Change Functions 250 hPa

Frömming et al. (2016)
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- ATR20 per 
flight-km

- 10-14K/km
- Very patchy

- ATR20 per 
Emission

- 10-14K/kg(N)
- related to weather 

pattern
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Cost-Benefit Relations for the 8 weather situations

Grewe et al. (2016)

• Large variety of climate impact 
reduction potentials

• WP1 (zonal) large difference 
between West and East-bound

• WP3 (Omega): No difference 
between West and East-bound

• Larger potentials in summer.
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Climatology based on 8 representative weather pattern

Grewe et al. (2016)

• Large difference between west- and 
eastbound vanishes in the 
climatological view

• But “very flat” Pareto-Front  Large 
Benefits at low costs

• Market based measures would 
enable climate optimised routing, if 
non-CO2 effects were taken into 
account
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Roadmap 

Grewe et al. (2016)

Lead by S. 
Matthes
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New York - London

Minimal costs

Minimal climate 
impact

Larger overlap of routes

Clear difference between 
West- and eastbound traffic
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• Only small 
differences visible

• Smaller flight corridor

• Difference between 
flights from and to 
Europe

Fleet basis



Thank you for your 
attention
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Weather situation at cruise levels
Strong jet stream, basically in West-East direction

Low

Jet stream

65 m/s

65 m/s = 230 km/h = 120 kn

Geopotential heights Wind velocity

Grewe et al., 2014b
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Climate cost functions at 200 hPa for 12:00 UTC

Contrails complex:
Depending on
- Lifetime
- Solar angle day/night
- Transport
- Loss processes

Chemistry:
Ozone / NOx pattern
- Follows meteorology
- Jet: Large values
- Low pressure: 

Smaller values

Contrail-Cirrus Ozone

Methane Total NOx

Grewe et al.,  Atmos. Environm., 2014b
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Air Traffic

• One day

• ~800 flights between USA and Europe
• Real air traffic taken into account

• Flight simulations performed by  
Eurocontrol

• Optimisation:
• Costs: Fuel and Crew
• Climate with different metrics

www.DLR.de  •  Chart 20



Relation between costs and climate: Pareto front 

Large potential for 
climate impact 

reduction (25%) at 
low costs (0.5%)

Climate optimal 
solution at higher 

costs 

Grewe et al., 2014b
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Relation between costs and climate: Pareto front 

Eastbound traffic has 
less climate reduction 
potential, because it 
is more bound to the 
jet stream:

Leaving the jet 
stream leads to fuel 
and NOx penalties

Grewe et al., 2014b
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How is the air traffic modified?
Changes along the Pareto-Front

0%

Grewe et al., 2014b
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How is the air traffic modified?
Changes along the Pareto-Front

25%

Only small changes 
in flight altitude

Grewe et al., 2014b
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How is the air traffic modified?
Changes along the Pareto-Front

50%

Some flights are 
shifted to lower 
flight  altitudes

Grewe et al., 2014b
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How is the air traffic modified?
Changes along the Pareto-Front

75%

Many flights shifted 
from FL380 to FL300

Grewe et al., 2014b
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How is the air traffic modified?
Changes along the Pareto-Front

100%

Main flight altitude: 
FL 300

Grewe et al., 2014b
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Horizontal re-routing is effective
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Courtesy: DKRZ



Is closing of airspace an option to achieve routings
with a reduction in the impact on climate? 

• Sensitivity study
• One route

 Potentially yes!
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Pareto front for
airspace closing

Pareto front for
optimal trajectories

Niklaß et al., 2015



Intermediate Stop Operations (ISO) 
Refuelling implies: Lower weight / Re-routing / different altitude

Re-routing options for one route

Fuel reduction [%]

Flight profiles

Tradeoffs between
temperature changes from
CO2 reduction and O3/H2O 

increase

www.DLR.de  •  Chart 30 > TAC 4 Conference, Bad Kohlgrub> Volker Grewe  > 23 June 2015

Linke, 2016; Linke et al., 2016



Outlook / 
Open Questions addressed in WeCare and ATM4E
What is the
• cost-effects realtion for full 3D trajectory optimisations
• impact on ATC work load?
• impact on ATM, especially in Europe (higher air traffic density)?
• impact of uncertainties from atmospheric science on the results?
• impact of weather forecast on optimal routing?

Can we verify the results of climate optimal routing?
• Air traffic simulator within a Earth-System Model (Yamashita et al. 2016)

www.DLR.de  •  Chart 31 > Lecture > Author  •  Document > Date



Summary
• Aviation has an impact on climate and routing is an important factor.
• Atmospheric uncertainties has to be key part of climate impact assessment
• We are moving from suggesting options to quantifying options
• Different options have different requirements, different type of costs, different 

time scales and effectiveness  Difficult to compare
• Political framework required to enable climate impact reduction
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Grewe&Linke, submitted, 2016



Thank you for your 
attention

Thank you for your 
attention



New Designs: AHEAD-Multi-fuel blended wing body
• Looking for alternatives to kerosene

• LH2 and LNG
• Bio fuels

• New combustion techniques
• LH2/LNG combustor
• Flameless kerosene combustion

 Low CO2 and NOx emissions
• Blended wing body for better L/D and fuel storage

Poster
Grewe et al.
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Climate impact from AHEAD MF-BWB

Climate impact reduction [%]

Poster
Grewe et al.

How large is the reduction in long-term climate change from the 
introduction of a MF-BWB in comparison to a future conventional aircraft?
- Consider a fleet of aircraft with Entry into service in 2050

Full fleet in 2075
- Reference aircraft B787 including future enhancements (efficiency & biofuels) 
- Average Temperature Response as Climate Indicator
- Mean change 2050 - 2150

The use of a multi fuel blended
wing body has the potential to
significantly reduce the climate
impact from aviation.
Less CO2 NOx Contrails
More H2O
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Summary
• Atmospheric uncertainties has to be key part of climate impact assessment
• We are moving from suggesting options to quantifying options
• Different options have different requirements, different type of costs, different 

time scales and effectiveness  Difficult to compare
• Political framework required to enable climate impact reduction

Project Requirements

AHEAD New Engine + Design

REACT4C CCF + ATM 

Closing Airspace Determination of
Climate Sens. Regions

CATS-New Re-Design

ISO Airport Infrastructure

CATS-Old No requirements
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How is the air traffic modified?
Changes along the Pareto-Front

0%

Grewe et al., 2014b
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How is the air traffic modified?
Changes along the Pareto-Front

25%

Only small changes 
in flight altitude

Grewe et al., 2014b
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How is the air traffic modified?
Changes along the Pareto-Front

50%

Some flights are 
shifted to lower 
flight  altitudes

Grewe et al., 2014b
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How is the air traffic modified?
Changes along the Pareto-Front

75%

Many flights shifted 
from FL380 to FL300

Grewe et al., 2014b

www.DLR.de  •  Chart 41 > TAC 4 Conference, Bad Kohlgrub> Volker Grewe  > 23 June 2015



How is the air traffic modified?
Changes along the Pareto-Front

100%

Main flight altitude: 
FL 300

Grewe et al., 2014b
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How is the air traffic modified?
Lateral changes

100%

More confined air traffic.
Grewe et al., 2014b
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A B

What happens if an aircraft emits 
NOx at location A compared to location B?

Weather type #3
"Weak and 

tilted jet"

Different weather situations: 
Evolution of aircraft NOx
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EMAC-Symposium 14.-16. Februar 2012

Evolution of O3 [ppt] following a NOx pulse

A: 250hPa, 40°N, 60°W, 12 UTC B: 250hPa, 40°N, 30°W, 12 UTC
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CATS-Routes used by the long-range aircraft

CATS
Route network and specific "Global warming" [K/km] 
induced by individual routes for an A330

Dahlmann, 2011
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What can we do about the uncertainty?
An example from aviation: 4 slightly different emissions scenarios
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Perform Monte-Carlo simulations: pdf of ATR

Dahlmann et al., 2016
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