

Aircraft level assessment of contrail mitigation

Jean-Charles Khou Weeded Ghedhaifi, Xavier Vancassel Emmanuel Montreuil, François Garnier

8th November 2016

ONERA

THE FRENCH AEROSPACE LAB

retour sur innovation

Objectives

Simulation tool

- Improving the characterization and prediction of macroscopic and microscopic properties of contrails
- Developing strategies for technological and operational mitigation

Positioning

Study of contrails forming mechanisms, in the near-field of the aircraft

Objectives

- 3D spatial CFD simulation with code CEDRE of ONERA
- Development of a multi-physics simulation tool:
 - Aerodynamics
 - Plume's chemistry
- └ Coupling processes

- Microphysics
- Taking into account a realistic geometry of a commercial aircraft

Engines emission

Jet/vortex interaction

Chemical processes

ONERA

and version addressed to

Microphysics processes

Aerodynamic models

- Navier-Stokes equations
- Reynolds Averaged Navier-Stokes Approach
- K-I Turbulence model

Chemical kinetics scheme

- Complex gas phase chemical reactions mechanism (Kärcher et al., 1996)
 - 22 species (SOx, NOx, HOx, COx)
 - 60 reactions

Microphysics processes

- Particles transport using an Eulerian approach
 - Passive scalar representing the particle number density N_s
- Soot activation by adsorption of H₂SO₄ and SO₃ molecules
 - Evaluation of the number of impaction between acid molecules and soot particles
 - Surface fraction of activated particles

$$\theta_{ads} = \frac{n(\mathrm{SO}_{3_{ads}}) + n(\mathrm{H}_2 \mathrm{SO}_{4_{ads}})}{\sigma_0}$$

 Hypothesis: Condensation limited to the activated part of the soot particle

Microphysics processes

- Condensation/Evaporation of water onto soot particles:
 - Evaluation of the Condensation/Evaporation rate depending on
 - Water saturation
 - Properties of the ice particles (Diameter, Concentration)
 - Taking into account the Kelvin effect

Geometry

B737 type aircraft

Double-flow engine

- Using the symmetry of the aircraft
- Computational domain
 - 4 wingspans
 - Age of the plume: ≈ 0.5 s

ONERA

ted version addressed the

Meshes

Surface mesh of the aircraft

$\frac{1}{2}$ span cross section

- Area of refined mesh
 - Wake vortices
 - Jet
 - Jet/vortex interaction
- ~ 27 million cells

1 span cross section

Initial and boundary conditions

Cruise conditions

- 36000 feet altitude
- P = 24000 Pa
- T = 219 K
- Speed 252 m/s

Ambient air relative humidity

• HR = 60%

Core flow

- V = 480 m/s
- T = 580 K
- Monodispersed soot
 - N_s = 10¹² #/m³
 - r_s = 20 nm
- Exhaust gas

Engine CFM-56 (Garnier et al., 1997)

Bypass flow

- V = 311 m/s
- T = 253 K

Simulation results

Ice particles

RetatSvelphum Gobtytent: 859%ppm

14 08/11/2016 – FORUM-AE Workshop – Jean-Charles Khou

Sensitivity study Soot emission concentration $N_s = 10^{11} / 10^{12} \text{ #.m}^{-3}$

Contrail visibility

Visibility criteria: $\tau_v > 0,01$

18 08/11/2016 – FORUM-AE Workshop – Jean-Charles Khou

Sensitivity study results

- Reduction of soot emission indices should lead in the near field to:
 - Smaller concentration of ice particles
 - Less opaque contrail
 - Less spread contrail

Conclusions

✓ Achievement of a comprehensive contrails formation simulation tool

 First 3D spatial simulation in the near field taking into account aerodynamic-chemical-microphysics interaction with a complete aircraft geometry

Analysis of the role of soot emission indices, relative humidity (Khou et al., 2015), and Fuel Sulphur Content (Khou et al., 2016)

Ongoing work

Geometry impact studies

For example:

Engine position

Size and type of jet aircrafts and engines

08/11/2016 - FORUM-AE Workshop - Jean-Charles Khou

