

FORUM-AE COORDINATION ACTION

FP7 European coordination action; GA 605506; 2013-2017

Emissions Mitigation Concepts

Paul Madden, Denise Ahrens (RR)
Olivier Penanhoat, Yoann Mery, Nicolas Tantot (Safran-AE)

ECATS 2nd Conference on Making Aviation Environmentally Sustainable and Climate Change Joint Workshop with FORUM-AE Athens – 8th Nov. 2016

www.forum-ae.eu

CONTEXT: ACARE GOALS

ACARE Environmental Goals by 2050

- CO2 emissions per passenger kilometre have been reduced by 75%, NOx emissions by 90% and perceived noise by 65%, all relative to the year 2000.
- Aircraft movements are emission-free when taxiing.
- Air vehicles are designed and manufactured to be recyclable.
- Europe is established as a centre of excellence on sustainable alternative fuels, including those for aviation, based on a strong European energy policy.
- Europe is at the forefront of atmospheric research and takes the lead in formulating a prioritised environmental action plan and establishes global environmental standards.

Rolls-Royce Engine Demonstrator Programmes

→ Continuous Effort on Technology to Reduce Fuel Burn and CO2

World-Leading Product Evolution

Technology EIS Readiness	2020+	2025+	
Bypass Ratio	11+	15+ 70+	
Overall Pressure Ratio	60+		
Efficiency relative to Trent 700	20%+	25%+	

World-Leading Product Evolution

UltraFan – Technology Advances

→ Continuous Effort on Technology to Reduce Fuel Burn and CO2

→ Exemple: CROR solution

- A Counter Rotating Open Rotor (CROR) is expected to provide a significant benefit in terms of FB/CO2 reduction, with an estimated reduction of -35% on a SMR aircraft, compared to 2000 technology.
- The development of this engine requires advanced solutions in terms of aerodynamics, acoustics and mechanics. It requires also a much stronger integration to the aircraft than usual turbofans.
- A demonstrator (pusher type) is developed in CS SAGE2 ITD under Safran-ae lead and should be tested beginning of 2017.

Open Rotor will run in the coming months on a brand new Safran Open Air Test Bench.

→ Exemple: CROR solution

- Success of CROR is based on many new technologies: new components (high power counter-rotating gearbox, rotating frames...), adapted mouning system design, specific control system...
- Overview of demonstrator's bricks and breakdown with partners:

→ Promising but more to be done

CO2 MITIGATION SOLUTIONS

- → ACARE 2050 very challenging CO2 reduction objective would permit to mitigate substantially the effect of traffic growth.
 - So, it is essential to pursue a tremendous effort at the aircraft level, the engine level and the ATM & flight operation level in order to progress towards this ambitious goal.
- → Unconventional configurations like aircrafts equipped with CROR concept or UHBPR concepts, must be further developed.
 - Their mitigation potential, complemented with laminar wing benefit, must be maximised and their maturity must be pushed over TRL5

URANS CROR calculation

A340-300

Extend of laminar flow

Representation of laminar Wing on A340 flying test bed

Laminar wing test bed

EU R&T Technology Programmes

Rolls-Royce & FP7: **39 projects**

Rolls-Royce & Clean Sky: 4 major demonstrators

EU R&T Technology Programmes

Flight and Ground Test of Composite Systems

Flight and Ground Test of UltraFan™

Turbines

E-Break

Ericka

Factor

Future

Fan Noise

Openair

Dream

Flocon

Silencer

Fan

Enoval

Lemcotec

E-Break

NEWAC

Rolls-Royce proprietary information

Compressor

Combustor

Lemcotec

First, KIAI

EEFAE

Dream

Enoval

Whole Engine Modelling

Engine Architecture

Crescendo

Oil & Seal **Systems**

Elubsys

→ Continuous effort (on combustor techno) to reduce non-CO2 emissions

→ NOx mitigation – MSFI Technology

- ➤ Safran-ae lean combustion technology is called MSFI (Multi Staged Fuel Injection)
- ➤ Optimisation of the fuel split between the pilot injector and the primary injector is supported by LES calculations (stronger interaction between pilot & lean flame is seen at 20% split)

COMBUSTION EMISSIONS MITIGATION SOLUTIONS

Consensus appears that fine particles (nvPM) reduction must be also achieved, in addition to NOx. This induces critical R&T on:

- → The combustor technology itself in order to reduce both NOx & nvPM
 - enhanced lean combustion in general (achieving TRL6 maturity & extending its application to smaller size and/or smaller OPR engine combustors),
 - focus on more specific aspects which may be beneficial to particles reduction

Lean combustion technology: Snecma calculation (left), Rolls-Royce solution (right)

Rolls Royce Lean Burn Pre-Production Validation

E3E Core (operability)

EFE (Emissions and high T performance)

ALECSYS (Trent engine) System Commissioning

Stennis (Noise)

Manitoba (Icing)

Flying Test Bed (In-flight Operability)

CO2 MITIGATION SOLUTIONS

- → Aircraft/Engine technologies must be further and continuously improved
 - both for evolutionary aircraft/engine applications and longer term disruptive ones
- → More radically unconventional solutions (distributed propulsion a/c...) should be also considered for much longer term and at lower TRL

Propulsive-Fuselage Concept (PFC)

Distributed Multiple-Fans Concept (DMFC)

DISPURSAL Project Analysis

MITIGATION SOLUTIONS & RECOMMENDATIONS:

→ Status against ACARE goals

	Reference 2000	ACARE 2020 Goals (at TRL6)		ACARE 2050 Goals (at TRL6)		FORUM-AE Assessment (2015)
		High Level	detailed (SRA)	High Level	detailed (SRIA)	(extrapol. at TRL6 in 2020)
CO2		"-50% per pass km"	aircraft: -20% to -25% engine: -15% to -20% ATM: -5% to -10%	"-75% per pass km"	aircraft & engine: -68% ATM: -12% Other: -12%	aircraft + engine +ATM: ≈ -38% in average per pass km
NOx (LTO)	Representative technology of	"-80%"	engine: -60% CAEP6 ; complement achieved by aircraft + ATM	"-90%"	engine: -75% CAEP6; complement achieved by aircraft + ATM	engine: [-55%, -65%] CAEP6
NOx (Cruise)	aircraft & engine with 2000 EIS, & representative	"-80%"	Achieved through -50% Fuel Burn & -60% cruise EINOx reduction	"-90%"	Achieved through -75% Fuel Burn & further cruise EINOx reduction	not quantified
Other emissions	2000 ATM	"damaging emissions reduced"	emissions qualitatively reduced (particles, CO, UHC) and better understanding of impacts	"emissions- free taxiing" + qualitative reduction	knowlegde of emissions (particles, VOC) and better understanding of impacts	better knowledge of engines particles emissions

MITIGATION SOLUTIONS CONCLUSIONS

- Engine manufacturers spend vast amounts of money on emissions reductions.
- Support from States and EU is critical to success of these programmes. Manufacturers match any funding with their own funding.
- Airframers expect new engine concepts to be fully tested to high technology readiness level before they will accept them on to new aircraft.
 - There are many engine demonstrator programmes for both CO2 and combustion emissions (e.g. NOx reductions) on going and these will define the future aircraft.
- The ACARE targets and Flight Path 2050 targets are extremely challenging but manufacturing industry is fully committed to improving the technology towards those targets.

CONTEXT: TRAFIC GROWTH & AVIATION EFFICIENCY

→ Evolution of Anthropogenic CO2 from aviation?

assumptions: ACARE 2050 goal is achieved in 2050 and fully introduced in the 2050 fleet; there is a continuous improvement of average efficiency from now to 2050; ICAO 37th Assembly projected average air traffic growth of 4.6% is taken

MONITORING^A

→ Very large number of relevant projects

PROJECT	T0	STATUS	Coordinator	TITLE	TYPE
REACT4C	2010	Completed	DLR*	Reducing Emissions from Aviation by Changing Trajectories for the Benefit of Climate	Impacts
ECATS	2005	Foundation	ECATS*	Environmental Compatible Air Transport System => Foundation	Impacts
MOZAIC	1994	On-going	RC Jülich	Measurement of Ozone, Water Vapor, Carbon Monoxide, Nitrogen Oxide by Airbus In-Service Aircraft	Impacts
IAGOS	2008	On-going	RC Jülich	In service Aircraft for a Global Observing System	Impacts
IAGOS ERI	2009	On-going	RC Jülich	In service Aircraft for a Global Observing System / European Research Infrastructure	Impacts
CARIBIC	2004	On-going	MPI Chemie, Mainz	Civil aircraft for the regular investigation of the atmosphere based on an instrument container	Impacts
QUANTIFY	2005	Completed	DLR*	Quantifying the Climate Impact of Global and European Transport Systems	Impacts
CleanSky - SFWA	2008	On-going	Al*	SMART Fixed Wing Aircraft	Aircraft
CleanSky - GRA	2008	On-going	Alenia	The Green Regional Aircraft	Aircraft
CleanSky - GRC	2008	On-going	Eurocopter	Green Rotorcraft	Aircraft
NACRE	2005	Completed	Al*	New Aircraft Concepts Research	Aircraft
AHEAD	2011	On-going	TU Delft	Advanced Hybrid Engines for Aircraft Development	Aircraft
DISPURSAL	2013	On-going	Bauhaus	Distributed Propulsion and Ultra-high By-pass Rotor Study at Aircraft Level	Aircraft
CleanSky - SAGE	2008	On-going	RR*&SN*	Sustainable And Green Engine	Engine
DREAM	2008	Completed	RR*	valiDation of Radical Engine Architecture systeMs	Engine & Fuel
NEWAC	2006	Completed	MTU	NEW Aero engine Core concepts	Engine HP
VITAL	2005	Completed	SN*	Environmentally Friendly Aero-Engine	Engine BP
LEMCOTEC	2011	On-going	RRD*	Low Emissions Core-Engine Technologies	Engine BP
EBREAK	2012	On-going	TM*	Engine Breakthrough components and subsystems	Engine
ENOVAL	2013	On-going	MTU	The Engine mOdule Validators	Engine BP

MONITORING^B

→ Monitoring activity (continued)

				,	
KIAI	2009	Completed	SN*	Knowledge for Ignition, Acoustics and Instabilities	Combustor
FIRST	2010	On-going	RR*	Fuel injection research	Combustor
FACTOR	2010	On-going	SN*	Turbine combustor interaction	Combustor
IMPACT-AE	2011	On-going	RRD*	Design methodologies	Combustor
TECC-AE	2008	Completed	SN*	Technology Enhancements for Clean Combustion	Combustor
INTELLECT D.M.	2003	Completed	RRD*	Integrated Lean Low-Emission Combustor Design Methodology	Combustor
TIMECOP-AE	2006	Completed	TM*	Toward Innovative Methods for Combustion Prediction in Aero-engines	Combustor
TLC	2005	Completed	SN*	Towards Lean Combustion	Combustor
LOPOCOTEP	2000	Completed	SN*	LOw POllutant COmbustor TEchnology Project	Combustor
ALFA-BIRD	2008	Completed	Eu-Vri	Alternative Fuels and Biofuels for Aircraft Development	Fuel
SWAFEA	2009	Completed	Onera	Sustainable Way for Alternative Fuels and Energy in Aviation	Fuel
burnFAIR	2010	On-going	LH*	Searching for a viable kerosene replacement	Fuel
ITAKA	2012	On-going	SEN*	Initiative Towars sustAinable Kerosene for Aviation	Fuel
SESAR	2007	On-going	JU	Single European Sky ATM Research	Operations
CleanSky - SGO	2008	On-going	Thales	System for Green Operation	Operations
AIRE	2009	On-going	SJU-FAA	Atlantic Interoperability Initiative to Reduce Emissions	Operations
ERAT	2007	Completed	To70	Environmental Responsible Air Transport	Operations
CS-EcoDesign	2008	On-going	DA&FHF	Eco-Design (co-leaded by Dassault & Fraunhofer)	Recyclability
CleanSky - TE	2008	On-going	Thales	Technology Evaluator	Assessment
AERONET III	2003	Completed	DLR*	Aircraft Emissions and Reduction Technologies	Network & monitoring
X-NOISE EV	2010	On-going	SN*	Aviation Noise Research Network and Coordination	Network & monitoring for NOISE
COREJet-fuel	2013	On-going	FNR	Coordinating research and innovation of jet and other sustainable aviation fuel	Network & monitoring for Fuel
Team-Play	2010	Completed	DLR*	Tool Suite for Environmental and Economic Aviation Modelling for Policy Analysis	Regulation
NEPAIR	2003	Completed	Qinetiq	Development of the technical basis for a New Emissions Parameter covering the whole AIRcraft	Regulation
GreenAir	2009	On-going	EADS	Generation of Hydrogen by Kerosene Reforming via Efficient and Low-Emission New Alternative, Innovative, Refined Technologies for Aircraft	Others

→ nvPM mitigation – RQL technology

World-leading product evolution

 Drives a high pressure ratio core via 3 stages of turbines (1 HP, 2 IP) Redistributes workload between the IP and HP compressors and turbines An enhanced IP turbine drives the fan via a power gearbox, allowing deletion of the LP turbine

NOx (Engine)

ACARE goal -90% NOx overall reduction:

- -75% Rolls-Royce contribution
- -15% from operational efficiency improvements
- Trent family
- Technology demonstrator engine targets
- ACARE (Advisory Council for Aviation Research and Innovation in Europe) Flightpath 2050 target

Rolls Royce Lean Burn Combustion System Architecture

Conventional ignition system

