Chemical impacts of aviation emissions

Volker Grewe

Work based on simulations by C Frömming and analysis by S. Rosanka + REACT4C Team

Knowledge for Tomorrow

Institut für Physik der Atmosphäre DLR-Oberpfaffenhofen

The impact of nitrogen oxides on ozone and methane

- CO, CH₄, NMHC are important to consume O₂ and produce HO₂
 - Reaction of HO₂ with NO is rate limiting step for ozone production
- Nitric acid = HNO₃ and its rain out is a major loss for nitrogen compounds
 - CH₄, NMHCs are eventually converted into CO
- CO is eventually converted into CO₂

How important are NO_x emissions from aviation?

Large variation in short-lived ozone

Large variation in methane

How important are NO_x emissions from aviation?

Myhre et al., (2011) noted that RF methane calculations are based on steady-state assumptions on the methane response, which has a 12 year perturbation lifetime.

Roughly 65% of the response will be achieved in the respective year.

Holmes et al. RF NOx: 4.1 mW/m²

Correction with Myhre 12.2 mW/m²

Ratio between ozone and methane RF

Holmes et al., 2011

Ratio between ozone-RF and methane-RF from Lee et al. (2011):

Ozone-RF/Methane-RF: -1.65 ± 22%

is consistent with Holmes et al. 2011 (~ -1.7)

With Myhre et al. correction for transient behaviour: $-1.7 \rightarrow -2.6$

How does this ratio vary?

Grewe and Stenke, 2008

How large is the ozone to methane ratio varying?

Question:

- Where and when is ozone increasing due to a NO_x emission in the North Atlantic Flight Corridor?
- How much is the ratio varying?

Method:

Analysis of the REACT4C-data, derived with a modelling approach, which is based on a large number of trajectory calculations.

Region: North Atlantic

Number of trajectories: ~25.000

Weather: 5 representative winter and 3 summer situations. (Weather classification according to Irvine et al. (2013)

REACT4C Modelling set-up

Objective: Determine climate impact of a local emission, to optimise air traffic wrt climate

- Contributions of (unit) NO_x and H_2O emissionen to O_3 , OH, and PMO
- Contrail-cirrus
- Adjusted RF
- Climate metrics
- Result: Climate impact/emission

Grewe et al., 2014a

Chemical regimes for methane loss

Evolution of atmospheric changes for emissions at the time-region grid points

Grewe et al., GMD, 2014

90°N 75°N

60°N 45°N

30°N

Weather data and Ozone Climate-Change-Functions

Where ozone is produced?

Concept of "main ozone latitude, altitude, and time":

The main ozone gain latitude Φ_j of an emission location (identified with the index j) is defined as the mean latitude at which the air parcel trajectories experience most of the ozone increase.

= Ozone gain weighted latitude:

$$A_{j,i} = \int \frac{O_3^{Gain_i}(t) \cdot \Phi_i^{\not c}(t)}{\sum_{i=1}^{50} \int O_3^{Gain_i}(t) dt} dt$$

Step 1:

Latitude of trajectory / at time t

Contribution to the ozone gain latitude from a single trajectory

$$\phi_j = \sum_{i=1}^{50} A_{j,i}$$

Step 2:

Contribution to the ozone gain latitude from all trajectories

3 Case studies:

High pressure ridge (HPR) West of high pressure ridge Jet stream location

(300 trajectories) (300 trajectories) (450 trajectories)

PDFs of the ozone gain latitude

- Emissions in the HPR have a main contribution to ozone far more south
- Large difference between HPR and location west of the HPR

PDFs of the ozone gain altitude

- Emissions in the HPR have a main contribution to ozone at lower altitudes
- Large difference between HPR and location west of the HPR

PDFs of the ozone gain latitude

- Emissions in the HPR have a faster ozone gain
- Large difference between HPR and location west of the HPR

Ozone increase along trajectories

Large ozone increase in tropical regions around 10 days after emission

Large variety between ozone RF and methane climate impacts

- Larger ozone climate impact in summer
- Occasionally negative total NO_x impact

Ozone and Methane Anomalies wrt altitude and weather pattern

There is a tendency that NO_x , which produces a large ozone climate effects, also produces large negative methane effects.

However, large variability.

 \rightarrow Future work

Summary

- Large variations between ozone and methane climate response from aviation NO_x emissions for different
 - > models
 - different regions (altitude / latitude)
 - emission location within a weather pattern
 - Largest ozone contribution 10 to 15 days after emission
- Variations result from different transport pathways
 - might be the reason for difference among models
- "IPCC-like" RF figure normally assume an immediate methane response. Only 65% remain when 12 year perturbation lifetime is taken into account (Myhre et al., 2011).

