# Climate impact of contrail and contrail cirrus

Lisa Bock and Ulrike Burkhardt

ECATS / FORUM-AE workshop Athens, 08.11.2016





#### Climate impact of current air traffic (2005)

Aviation Radiative Forcing Components in 2005 Spatial LO (W m<sup>-2</sup>) **RF** Terms scale SU 0.0280 Carbon dioxide Global High (0.0253) Continental to hemispheric Ozone 0.0263 Med -Low production (0.219)-0.0125 Methane Med -Low Global (-0.0104)reduction NOx 0.0138 **⊨**+I Med -Low Global Total NO<sub>x</sub> (0.0115)0.0028 Hemispheric Water vapour Low to global (0.0020)Best estimate -0.0048 Local to Sulphate aerosol Low Estimate global (-0.0035)(IPCC AR4 values) 0.0034 90% confidence Local Soot aerosol Low (0.0025)to global Induced cirrus Local to Verv 0.042 hemispheric cloudiness Low 0.055 Total aviation Global Low (Excl. induced cirrus) (0.0478)------Total aviation Global Low (Incl. induced cirrus) 0.085 -0.08 -0.04 0.12 0 0.04 0.08 Radiative Forcing (W m<sup>-2</sup>)

(W m<sup>-2</sup>) Spatial LO scale SU 0.0280 Global High

Contrails CO<sub>2</sub> NO<sub>x</sub>

### 3.5-5.0% of warming attributed to air traffic

Lee et al., 2009

updated with Burkhardt&Kärcher, 2011 (for 2002 air traffic) Schumann et al., 2015: 63 mW/m2 Chen et al., 2012

#### **Contrail Cirrus in a climate model**

**ECHAM 5** - German community climate model **CCMod** - Simulation of a new cloud class: persistent contrail

- prognostic treatment of contrail cirrus volume, cover and longth (V, R, L), IWC (g) and ico crystal number.
  - length (V, B, L), IWC (q) and ice crystal number concentration (n)
- microphysical 2-moment-scheme
- formation when Schmidt-Appleman criterion exceeded
- persistence in cloud-free ice supersaturated areas
- simulation of contrail cirrus life cycle and atmospheric feedbacks
- stratosphere adjusted radiative forcing



Bock and Burkhardt, JGR, 2016a

#### **Introduction of microphysical 2-moment-scheme**



Allows the simulation of many tiny ice crystals within contrails

 $\rightarrow$ decreased sedimentation  $\rightarrow$  increased ice water content

 $\rightarrow$  RF larger

- $\rightarrow$  increased life time  $\rightarrow$  RF larger
- $\rightarrow$  increased albedo  $\rightarrow$  RF smaller

Dependency on initial ice crystal number could be investigated (soot effect)

#### Microphysical properties of contrail and contrail cirrus



In situ measurements of mainly very young contrails: S00 - Schröder et al. (2000); F09 - Febvre et al. (2009); V11 - Voigt et al. (2011)

satellite measurements of line-shaped contrails:

- 112 Iwabuchi et al. (2012);
- M13 Minnis et al. (2013);
- B13 Bedka et al. (2013);
- V15 Vazquez-Navarro et al. (2015)

#### **Results: Coverage and optical Depth 2002 (AERO2k)**



#### **Results: Coverage and optical Depth 2002 (AERO2k)**





→ larger optical depth especially in main flight regions





→ global results agree well, but larger optical depth and larger compensation of longwave by shortwave RF countervail in the new model version







#### Bock and Burkhardt, JGR, 2016b

**Results: Radiative forcing** 





→ large differences of inventories, especially in high altitudes, leads to strong increase of RF

AERO2k:  $3.28 \cdot 10^{10}$  flight-km AEDT 2006 slant:  $6.82 \cdot 10^{10}$  flight-km AEDT 2006 track:  $3.82 \cdot 10^{10}$  flight-km

#### **Reducing soot emissions**

- Use of alternative aviation fuels may reduce soot emissions by mass and number
- Reduction in soot number emission index, El<sub>soot</sub>
  - $\rightarrow$  reduction in initial ice crystal number concentration, n<sub>ice</sub>



 experiments to sensitivity of contrail cirrus RF on initial ice crystal number



#### **Mitigation study**



#### **Mitigation study**



#### **Aviation Scenarios**

| 2006 | <ul> <li>2006 Plus</li> <li>increased<br/>air traffic<br/>volume</li> </ul> | <ul> <li>2050 Baseline</li> <li>increased air<br/>traffic volume</li> <li>climate change</li> </ul> | <ul> <li>2050 Scenario1</li> <li>increased air traffic volume</li> <li>climate change</li> </ul> |
|------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
|      |                                                                             |                                                                                                     | <ul> <li>improvement in fuel<br/>efficiency</li> <li>reduction of soot<br/>emission</li> </ul>   |



#### Inventories: flight distance (Track distance)



In 2006 air traffic largest at ~240 hPa. In 2050 air traffic predicted to be largest at ~200 hPa.



#### **Radiative Forcing**



3 -3

## Increase of flight volume + shift of level with max. flight volume



- increase in contrail cirrus RF less than the increase in flight distance
- stronger relative increase of air traffic and contrail cirrus RF in the Tropics



#### **Radiative Forcing**





→ due to climate change (RCP6.0) contrail cirrus RF for the year 2050 is increased slightly (no significance)



#### **Radiative Forcing**



#### Conclusion

- → After introducing contrail ice crystal number in the climate model: better representation of microphysical processes and better knowledge of microphysical and optical properties of contrail cirrus
- → Global results agree well, but larger optical depth and larger compensation of longwave by shortwave RF compensate in the new model version
- → Strong increase of RF from inventory AERO2k 2002 to AEDT 2006
- → Initial ice crystal number strongly affects the microphysical and optical properties of contrail cirrus
  - lower soot emission  $\Rightarrow$  smaller contrail optical depth



nonlinear dependence of contrail cirrus RF on soot emissions

#### **Future scenarios:**

- → Strong increase of RF due to larger air traffic volume (sceanrio 2050) cannot be compensated by other processes
- → Changing flight level strongly effects contrail formation

higher flight level  $\Rightarrow$  midlatitudes: less contrails

tropics: more contrails

→ Climate change has a very small impact on contrail cirrus RF



# Thanks for your attention!

