

The European Commission's science and knowledge service

Joint Research Centre

Alternative Aviation Fuels: Life-Cycle Emissions and Energy Profiles

> Laura Lonza Joint Research Centre Energy, Transport and Climate Change

> > 2nd ECATS Conference Athens – 7-9 November 2016

Joint Research Centre

3L

The European Commission's science and knowledge service

Joint Research Centre

JRC Role – Facts and Figures

- 6 locations in 5 Member States
- 1500 core research staff, out of around 3000 total staff
- 83% of core research staff with PhDs
- Research fellows and visiting scientists
- 42 large-scale research facilities, more than 110 online databases
- More than 100 economic, bio-physical and nuclear models

The European Commission's science and knowledge service

Joint Research Centre

JRC Role – Facts and Figures

- Focus on the priorities of the Commission (80% of activities co-designed with partner DGs)
- Work for more than 20 policy DGs and several project teams
- Expertise in a wide range of areas, from economic and financial analysis through to energy and transport, health, environment and nuclear safeguards

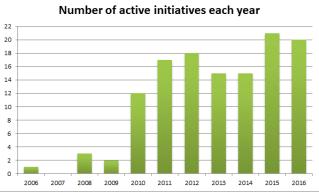
The European Commission's science and knowledge service

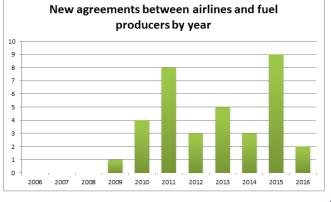
Joint Research Centre

JRC Role – Facts and Figures

- Independent of private, commercial or national interests
- **Policy-neutral**: has no policy agenda of its own
- 30% of activities in policy preparation, 70% in implementation
- Transversal service cuts across policy silos


Alternative Aviation Fuels: Life-Cycle Emission and Energy Profiles


<u>Overview</u>


- General remarks
- JRC AJF study: overview and foremost considerations
- Key points:
 - Greenhouse Gas Savings and Energy Efficiency
 - Marginal <u>or</u> Average Values
 - Co-product Methods
- Conclusions

Alternative Jet Fuels ...a growing role towards sector's decarbonisation

Synthesis of GFAAF database - August 2016

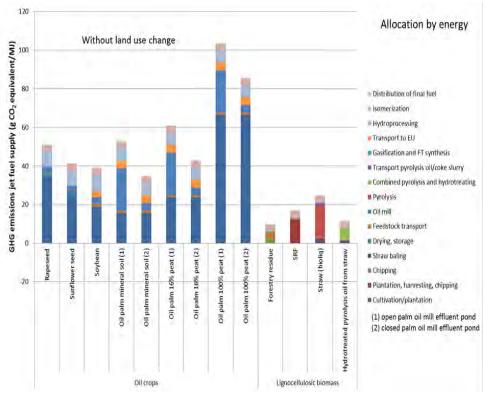
Opening consideration on system boundaries

So-called "Well-to-Wake" analysis

"Life-cycle analysis"

Implicit assumption:

Effects are the same wherever they occur


GHG emissions acting at global scale
False for other metrics (air, water, ...)

JRC AJF study foremost considerations

GHG emissions profiles and energy efficiency of representative alternative jet fuels tell us:

- <u>Transparent</u> methodology choices
 /assumptions: a fundamental element for
 correct "reading" of results.
- <u>Variety</u> of results across studies: results likely to be "similar" in fact rather than the same: tricky to define values in a regulatory framework at global scale.
- The specific pathway is <u>critical</u>: there is no "good" or "bad" feedstock/conversion process: dis/incentives to steer performance...and deployment!
- <u>Generally</u>: a given GHG reduction potential is achieved at the cost of higher energy expended per fuel unit produced.

GHG savings <u>and</u> energy efficiency

Growing relevance (...of GHG emissions generated by aviation)

...in other words...

<u>Question</u> if <u>energy efficiency</u> is considered, which AJFs are still an efficient option?

Focus on GHG emissions reduction potential of AJFs

> ??? What about <u>energy</u> <u>efficiency</u> of AJFs

Functional unit considered: MJ expended (both fossil and renewable) to produce MJ of final fuel

Marginal <u>or</u> Average Values

Aim: to assess the marginal impact of extra (or less of) any given fuel

reflecting rational choices of economic operators

The marginal/incremental approach is instrumental to:

- <u>Guide judgements</u> on the potential benefits of substituting conventional fuels by alternatives;
- For future fuels: <u>understand</u> where the additional energy resource would come from (if demand for a new fuel were to increase).
- Marginal refining emissions
 Marginal natural gas
 Marginal processing of biofuel (new bio-refinery)
- Average emissions as proxy: EU electricity emissions Crops cultivation: marginal emissions for *extra* crop: from yield intensification expansion onto marginal cropland

Co-product methods: a critical choice

Processes in fuel supply chain may produce multiple products (besides aviation fuel) and interplay with GHG performance of other sectors/markets.

The guiding principle (to opt for an allocation method) is the transparent assessment of LCA effects on fuel pathways carbon reductions minimizing distortion.

...While accounting for knowledge on:

- actual use of the co-products;
- level of understanding of co-products markets, (incl. its maturity and stability);
- relative magnitude and value of fuel products <u>vs.</u> co-products;

Energy allocation is okay for co-products valued based on their energy content **But**...

not a robust choice for co-products not valued on the basis of their energy content

main advantage of substitution method (tracking the fate of co-products) becomes shaky

- Considering uncertainties, and
- Recognising limited knowledge and data availability for the majority of co-product markets

Conclusions

- AJFs have considerable potential ahead: careful consideration and action to avoid/minimize negative externalities.
- Net GHG benefits if tackling climate change is the goal
- No "good" or "bad" pathway and robust assessment:
 - Efficient allocation of (scarce) resources: GHG emissions <u>AND</u> energy efficiency
 - Guidance to economic operators: preference to marginal <u>vs</u> average values
 - <u>Net</u> GHG emissions' benefits: impacts on other sectors/markets via coproducts
- Robust <u>sustainability criteria</u> and implementation schemes in the deployment of AJFs to avoid:
 - Missing the goal (tackle climate change)
 - Misleading investment signals to economic operators

Thank you for your attention!

...Happy to take your questions

Laura.Lonza@ec.europa.eu

Stay in touch

EU Science Hub: ec.europa.eu/jrc

Twitter: @EU_ScienceHub

YouTube: EU Science Hub f

Facebook: EU Science Hub – Joint Research Centre

LinkedIn: Joint Research Centre

