

CERTH CENTRE FOR RESEARCH & TECHNOLOGY HELLAS

SUSTAINABLE HEFAS FOR AVIATION

Dr. Stella Bezergianni, Dr. Loukia P. Chrysikou

2nd ECATS Conference: Making aviation environmentally sustainable 7-9 November 2016, Athens, Greece

Biomass Conversion to Biofuels

<u>Renewable</u>

- ? Low H/C ratio
- ? Contains water
 - Corrosion problems
- ? High oxygen content (aldehydes, acids, cetones)
 - Reduced heating value
 - Reduced oxidation stability
 - Increased acidity

Engine performance problems

Biomass requires H/C increase, oxygen and H₂O removal

Aviation Biofuels & CO₂ Reduction Potential

Adapted by Booz & Company, WEF, Davos 2011

Measures to achieve CO,-reduction targets

MMA

Which Biofuels Technology?

MM

S. Bezergianni and L. Chrysikou, Sustainable HEFAs for Aviation

Enerav

- Limit aviation GHG emissions' impact on global climate
 - Target: 60% GHG emissions reduction over fossil fuels
- Limit aviation emissions' impact on local air quality
- Meet stringent sustainability standards with respect to land, water and energy use
 - Avoid direct and indirect land use change impacts
 - Not displace or compete with food/feed crops
- Provide a positive socio-economic impact
- Exhibit minimal impact on biodiversity
- Reduce the number of people affected by significant aircraft noise
- Enable harmonisation of sustainability standards in all countries

- Bio kerosene specifications relevant for Europe
 - ASTM D1655 and D7566 (US specifications)
 - » ASTM D1655: Standard specification for Jet A-1 kerosene for civil aviation use
 - » ASTM D7566: Specification for Synthetic kerosene & blends of synthetic (max 50%) and conventional kerosene (Blends meeting ASTM D7566 are by definition ASTM D1655 kerosene and can be used like conventional kerosene)
 - DefStan 91-91 (European specification)

Aviation Biofuels' Quality Challenge

	ASTM D1655	ASTM D7566	Reason of expanded quality requirements of aviation biofuels
Aromatics (% v)	25 (max)	<mark>8</mark> -25	Minimum enforced to maintain engine components (ex. seals), as some biofuels do not have aromatics
Distillation T50-T10 (°C)	NA	15 (min)	Ensure proper and smooth range boing range distribution
Distillation T90-T10 (°C)	NA	40 (min)	Ensure proper and smooth range boing range distribution
Lubricity (mm)	NA	0.85	Specified to ensure smooth operation of moving engine parts, as biofuels are pure HC w/o polar acids

All other quality specs are identical (acidity, sulfur, mercaptans, density, flash point, viscosity, energy density, smoke point, distillation residue, corrosion, thermal stability, electrical conductivity, contaminants)

Aviation Biofuels Types

	Pros	Cons	Applications
FTs	 Lignocellulosic feedstock (agro/forest residues) High sustainability 	High capital costsQuestionable economicsLow aromatics	 No commercial production BioTfuel project pilot (2016 ?)
HEFAs	Technology available	 High production costs (1700- 2400\$/t) Low aromatics 	Plants in operationFuel tested in flights
ATJs	Under development	 Low aromatics (need additives) 	Demo plant in operationFuel tested in flights
СН	 High aromatics 	Low aromatics	 Demo plant in operation

Which Biofuels Technology?

MM

IELLAS

Enerav

Resources

HEFAs Production Technology

MW

Hydrotreating Reactions (1/2)

- R : unsaturated aliphatic chain
- ${\bf R}\,$: saturated aliphatic chain

 $R_1 = R_2 + R_3$

 Reactions associated with HEFA production based on a range of large and unsaturated fatty acids content of lipid feedstocks

	Reaction type	Reaction	H ₂ /oil (mol/100mol)
1	Triglyceride hydrogenolysis*	$ \begin{array}{c} & \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	2.100
2	Saturation	$R-(CH=CH)_n-CH_3 + n \cdot H_2 \longrightarrow R-CH_2-CH_2-CH_3$	3•n•(50-225)***
3	Deoxygenation**	$\begin{array}{rcl} \text{R-CH}_2\text{COOH} &+ 3 \cdot \text{H}_2 &\longrightarrow & \text{R-CH}_2\text{CH}_3 &+ 2 \cdot \text{H}_2\text{O} \\ \text{R-CH}_2\text{COOH} &+ \text{H}_2 &\longrightarrow & \text{R-CH}_3 &+ & \text{CO} &+ & \text{H}_2\text{O} \\ \text{R-CH}_2\text{COOH} &+ & \text{H}_2 &\longrightarrow & \text{R-CH}_3 &+ & \text{CO}_2 \end{array}$	3·100·(1-3)
4	Isomerization	$R-CH_2-CH_2-CH_3 \longrightarrow R-CH-CH_3$ I CH_3	0
5	Hydrocracking	$ R-CH_2-CH_2-CH_3 + H_2 \longrightarrow R-H + CH_3-CH_2-CH_3 $	3•(78-95)***

Lipid Sources

- Plant oils
 - Triglycerides
 - Coconut oil renders 85% jet range (C10-C14) molecules

- Microalgae oils
 - Mostly FFAs
 - Trichodesmium erythraeum renders 55% of jet molecules

Process and

Energy Resource:

Lipid Source Type vs. H₂ Consumption

		Plant	oils	-		Microa	algae oil	S	
Reaction type	Sunflower	Rape	Palm	Coconut	Dunaliella sp.	Chlorella sp.	Nannochloropsis Oceanica	Trichodesmium erythraeum sp.	Comments
1. Hydrogenolysis	2.0	2.0	2.0	2.0	0.0	0.0	0.0	0.0	 No H₂ consumption during hydrogenolysis of microalgal lipids
2. Saturation	6.3	1.4	0.6	0.1	0.0	0.0	0.0	0.5	 Significant H₂ consumption during this step Need for saturated lipids feedstocks (some plant oils) Can be improved for microalgae-based species by improving cultivation strategy & genetic modification of algae strain
3. Deoxygenation	6.0	6.0	6.0	6.0	2.0	2.0	2.0	2.0	 Highest H₂ consumption Can be improved by catalyst design optimization
4. Isomerization	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Comparable consumption (negligible)
5. Hydrocracking	2.6	2.6	2.5	0.5	0.9	0.8	0.7	0.4	 Comparable H₂ consumption for all species Can be improved for microalgae-based species only by improving cultivation strategy & genetic modification of algae strain
Total (mol H ₂ /mol oil)	16.9	12.0	11.1	8.5	2.9	2.8	2.7	2.4	
Total (mol H₂/mol jet)	5.6	4.0	3.7	2.8	2.9	2.8	2.7	2.4	

CPERI

15

Chemical

Energy

Process and

sources

Microalgal Oil Experimental Tests

- Evaluate different microalgae species
 - Stichococcus sp., Nannochloropsis sp., Botryococcus braunii
- Develop technology for microalgal oil extraction and conversion to 3G-biofuels

MICROALGAE-BIO-PRODUCTS

A. Karapatsia, et.al., 10th European Symposium on Biochemical Engineering Sciences and 6th International Forum on Industrial Bioprocesses, September 7-10, 2014, Lille, France

Overall HEFAs Production Carbon Footprint

Sources:

[1] JRC Technical Report, 2014

[2] Spath, P.L., Mann, M.K. NREL report DE-AC36-99-GO10337, 2001

[3] Handler R.M., et.al.. Algal Research, 1, pp. 83-92, 2012

[4]. Medeiros, et.al. Journal of Cleaner Production, 96, pp.493-500,2015

Limits & Opportunities of HEFAs

- High production costs
 - Mostly related with lipid cultivation/extraction
- Current low crude oil prices
- Low aromatics

- Favorable carbon footprint
 - For some (not all) lipid sources
- Potential lipid integration in underlying refineries Hybrid jet

Next Steps...

Horizon 20-20 project: Reliable Bio-based Refinery Intermediates - BIOMATES

Thank you for your attention

For more information:

Extra Slides

Catalytic Hydrotreating & Biomass Upgrading

- Common refining conversion technology
 - H/C ratio increase
 - Heteroatom (S, N, O) and metals removal
 - High conversion
 - Feedstock variability
 - No by-products
- Most <u>effective</u> technology for biomass upgrading

Waste Lipids Upgrading ...

www.biofuels2g.gr

- Better combustion (increased cetane)
- More economic (high HHV)
- More stable (no TAN, high IP)
- Sustainable

- Bezergianni, S. et al. (2014) Fuel **118**:300
- Bezergianni, S.,et al. (2012), Fuel, 93:638
- Bezergianni, S., et al. (2011), Ind.Eng.Che.Res., **50**(7):3874
- Bezergianni, S., et al. (2010), Biores. Techn., 101(19):7658
 Bezergianni, S., et al. (2010), Biores. Techn., 101(17):2654
- Bezergianni, S., et al. (2010), Biores. Techn. 101(17):6651

S. Bezergianni and L. Chrysikou, Sustainable HEFAs for Aviation

ocess and

Is it possible to integrate biomass in refineries?

Co-Processing Biomass Technical & Environmental Targets

A. Technical feasibility

- Utilize existing infrastructure
- Maintain similar operation
- Maintain same product quality
- B. Environmental performance
 - Mitigate energy consumption
 - Reduction of emissions (WTT)

Technical Feasibility Assessment

- Evaluation of hydrotreating catalyst
- Determine optimal operating conditions
 - T, P, H₂/oil, LHSV
- Oetermine max WCO mixing ratio
- 4 Evaluate hybrid diesel
 - GHG emissions
 - engine performance

Catalyst Evaluation Heteroatom Removal

Catalyst Evaluation Deactivation Rate

- Catalyst deactivation rate is extremely important for catalyst selection
- Deactivation rate determined based on desulfurization efficiency at different DOS
- WCO by-product CO₂ has a suspending role in HDS/HDN

Gasoil

100

80

60

40

20

0

ERTH

SEARCH & TECHNOLOGY

330°C

HDS (%)

Effect of Biomass Content Heteroatom Removal & Diesel Yields

Diesel yields - Conversion sim

 Diesel yield favored with increasing WCO

ANA.

ERTH

TECHNOLOGY

- WCO contained triglycerides can be more easily converted into diesel range hydrocarbons
- Desulfurization is not limited by WCO

Biomass integration favors diesel yields and renders low S diesel

Bezergianni, S. et al (2014), Fuel, 136:366

Effect of Biomass Content Hydrogen Consumption

- Hydrogen consumption affects process economics
- Consumption Normalised* Hydrogen 1.2 consumption 1.1 increases due to underlying HDO kinetics
- Smaller WCO rates (<90%) are preferred for economic feasibility of WCO integration
 - $5-10\% \text{WCO} \rightarrow 7.5-8.5$ % increase in H_2 consumption

No more than 10% H₂ consumption increase for less than 10% WCO

30

S. Bezergianni and L. Chrysikou, Sustainable HEFAs for Aviation

1.5

1.4

1.3

1

WCO percent in the feed (%)

Quality Assessment Hybrid vs. Market Diesel

Properties	Units	Hybrid diesel	Market diesel
Density	kg/m ³	825,8	829,2
Flash point	°C	61	67
Sulpur	wppm	8,2	5,8
Viscosity (40°C)	cSt	2,996	3,066
Cetane index		59,1	58,3
Cetane number		56,7	55,7
Water	wppm	100	60
CFPP	°C	-2	0
Polyaromatics	%w/w	1,1	1,4
Lubricity	μm	181	174
Recovery 95% v/v	°C	353	353,2
Recovery at 250°C	%v/v	26,8	25,8

S. Bezergianni and L. Chrysikou, Sustainable HEFAs for Aviation

CPERI

Chemical

inerav

Process and

Environmental Performance Assessment

Fuel* type	gCO ₂ eq/MJ
Market diesel	16.97
Hybrid diesel (WCO co-processing)	9.32
Diesel with WCO-based HVO	14.15

* All fuels have a total 7% v/v bio-content

Co-processing of biomass in refinery is environmentally and economically more sustainable allowing extended integration of biomass in transportation sector.

Stand-alone Biomass Upgrading vs. Co-processing

Stand-alone biomass upgrading

- Produces drop-in biofuels (FAME, ethanol, HVOs, etc)
 - Technical limitations may be associated with end-use
- Requires infrastructure large CAPEX
- Utility intensive processes (fuel, NG, H₂ etc)
- Ambiguous environmental benefits

Biomass co-processing

- Renders hybrid fuels (decarb gasoline, jet, diesel)
 - Fully compatible with fossil counterparts
- Utilizes existing infrastructure Iow CAPEX
- Employs underlying utilities of refineries
- Clear reduction of CO₂ emissions during production

Conclusions

- Catalytic hydrotreatment is a key technology for biomass upgrading
 - Bio-based intermediates & lipids upgrading
 - Compatibility with fossil fuels, attractive properties
- Co-hydroprocessing can allow immediate and sustainable biomass integration with energy markets
 - No requirement of investments on new infrastructure
 - No significant technology limitations
 - Improvement of fuel sustainability (lower carbon foot-print)
 - Optimal way of integrating biomass in transportation sector from an environmental and economic point of view

Biomass & Biofuels

BIOMASS

- Energy crops
 - Sunflower, rapeseed, cotton, corn, barley, soy, sweet- sorghum, sugarbeet etc
- Lignocellulosic material
 - Wood, paper industry waste, forestry waste etc
- Animal fats
- Agricultural and municipal waste
- Waste cooking oil/fats
- Algae

S. Bezergianni and L. Chrysikou, Sustainable HEFAs for Aviation

36

Fuels produced from biomass

FAME Biodiesel Most Common Biofuel in EU

- Fatty Acid Methyl Esters, FAME
 - Produced via transesterification of fatty acids
- Lipid feedstocks / Triglycerides
 - Rape-seed oil, sunflower oil, cotton oil, tallow, waste cooking oil etc
 - Require dedicated cultivated areas S Food vs. Fuel
- Properties

& TECHNOLOGY

- Environmentally friendly (reduced SO_x, CO, aromatics)
- Higher cetane number and lubricity
- Reduced cold flow properties
- Low oxidation stability
- Tend to decompose hydroperoxides, acids, cetones
- Utilized as mixture with conventional diesel
 - B5 to B20 (higher FAME content renders problems in warmer countries)
 - No major engine modifications required

nd 37

Bioethanol Most Popular Biofuel Worldwide

- Sugar and starch feedstocks
 - Sugar-cane, sugarbeet, sweet-sorghum, corn, potato, etc
 - Require dedicated cultivated areas
 Food vs. Fuel
- Properties
 - Similar combustion with gasoline
 - Reduction of emissions
 - Higher octane number
 - » Employed as octane booster
 - Increase engine performance
 - Requires high purity ethanol in gasoline mixtures (99.5-99.9%)
- Utilized in mixtures with gasoline
 - Most common E10, ideal E85 (FFVs)

