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Biomass Conversion to Biofuels

 Renewable

? Low H/C ratio
? Contains water

─ Corrosion problems

? High oxygen content 
(aldehydes, acids, cetones)
─ Reduced heating value
─ Reduced oxidation stability
─ Increased acidity

Biomass requires H/C increase, oxygen and Η2Ο removal

Engine performance problems
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Aviation Biofuels & CO2 Reduction 
Potential

0

0.5

1

1.5

2

2.5

2005 Basecase
CO2

2030 Growth        2050 Growth 2050 Reduction

C
O

2
 (

b
il

li
o

n
 t

)

0.5

0.95

1.8

0.66

1.2

2.15

0.33
Potential CO2 savings from 

biofuels 1.4 billion tons/year

0

0.5

1

1.5

2

1 2 3 4
C

O
2
 (

b
il
lt

io
n

 t
)

0.1
0.1

0.2

1.4

Fleet rollover Infrastructure
Engine/airframe

research Biofuels

Required CO2 reduction 

1.8 billion tons/year

0

0.5

1

1.5

2

2.5

2005 Basecase
CO2

2030 Growth        2050 Growth 2050 Reduction

C
O

2
 (

b
il

li
o

n
 t

)

0.5

0.95

1.8

0.66

1.2

2.15

0.33
Potential CO2 savings from 

biofuels 1.4 billion tons/year

0

0.5

1

1.5

2

1 2 3 4
C

O
2
 (

b
il
lt

io
n

 t
)

0.1
0.1

0.2

1.4

Fleet rollover Infrastructure
Engine/airframe

research Biofuels

Required CO2 reduction 

1.8 billion tons/year

Adapted by Booz & Company, WEF, Davos 2011

Biofuels are the 
only way to meet 

the 2050 CO2

emission targets

Energy efficiency 2013 report
Adopted by IATA

Sarcar A.N., 
Amer. J.Clim.Chang., 1(3), 2012
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Which Biofuels Technology?

Presentation of Lucy Nattrass in Flightpath 2020 Workshop, Brussels, February 12, 2015
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Environmental Criteria

 Limit aviation GHG emissions’ impact on global climate
─ Target: 60% GHG emissions reduction over fossil fuels

 Limit aviation emissions’ impact on local air quality

 Meet stringent sustainability standards with respect to land, 
water and energy use 
─ Avoid direct and indirect land use change impacts 

─ Not displace or compete with food/feed crops 

 Provide a positive socio-economic impact 

 Exhibit minimal impact on biodiversity

 Reduce the number of people affected by significant aircraft noise 

 Enable harmonisation of sustainability standards in all countries



6S. Bezergianni  and L. Chrysikou, Sustainable HEFAs for Aviation

Quality Criteria

 Bio kerosene specifications relevant for Europe

─ ASTM D1655 and D7566 (US specifications)
» ASTM D1655: Standard specification for Jet A-1 kerosene for civil 

aviation use

» ASTM D7566: Specification for Synthetic kerosene & blends of 
synthetic (max 50%) and conventional kerosene (Blends meeting 
ASTM D7566 are by definition ASTM D1655 kerosene and can be 
used like conventional kerosene)

─ DefStan 91-91 (European specification)
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Aviation Biofuels’ Quality Challenge

ASTM
D1655

ASTM
D7566

Reason of expanded quality 
requirements of aviation biofuels

Aromatics (% v) 25 (max) 8-25 Minimum enforced to maintain engine 
components (ex. seals), as some 
biofuels do not have aromatics

Distillation T50-T10 (C) NA 15 (min) Ensure proper and smooth range 
boing range distribution

Distillation T90-T10 (C) NA 40 (min) Ensure proper and smooth range 
boing range distribution

Lubricity (mm) NA 0.85 Specified to ensure smooth operation 
of moving engine parts, as biofuels are 
pure HC w/o polar acids

All other quality specs are identical (acidity, sulfur, mercaptans, density, flash point, viscosity, energy 
density, smoke point, distillation residue, corrosion, thermal stability, electrical conductivity, contaminants)
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Aviation Biofuels Types

Pros Cons Applications

FTs • Lignocellulosic
feedstock 
(agro/forest 
residues)

• High sustainability

• High capital costs
• Questionable economics
• Low aromatics

• No commercial
production

• BioTfuel project pilot 
(2016 ?)

HEFAs • Technology available • High production costs (1700-
2400$/t)

• Low aromatics

• Plants in operation
• Fuel tested in flights

ATJs • Under development • Low aromatics (need 
additives)

• Demo plant in 
operation

• Fuel tested in flights

CH • High aromatics • Low aromatics • Demo plant in 
operation
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Which Biofuels Technology?

Presentation of Lucy Nattrass in Flightpath 2020 Workshop, Brussels, February 12, 2015

S
u

s
ta

in
a
b

le
 A

v
ia

tio
n

 S
u

s
ta

in
a
b

le
 F

u
e
ls

 

U
K

 R
o

a
d

-M
a
p

, 2
0
1
4
 



10S. Bezergianni  and L. Chrysikou, Sustainable HEFAs for Aviation

HEFAs Production Technology

 Flexibility of feedstock types

 High selectivity on biojet fuel

 Well established technology used in 
refining industry

─ In-line separation of water and acid 
gases

─ Relatively high production cost
 Mostly attributed to H2 consumption

• Vegetable oils
• Animal fats
• Greases
• Microalgal oil

Water

H2S, CO, CO2

Diesel

Jet

Light fuels

Fresh H2

(make up)

Deoxygenation Isomerization/
Hydrocracking

Product
separation
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Hydrotreating Reactions (1/2)

~

~

~

~
: unsaturated aliphatic chain

: saturated aliphatic chain

~+H2 +H2 +H2

 ρ reduction
 Diesel yield 

increase

 H/C increase
 Br# decrease

 TAN decrease
 Induction time increase
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Hydrotreating Reactions (2/2)

+H2

 Cold flow 
properties 
improvement

R1-CH2-CH2-CH3 R1-CH-CH3

CH3

+H2

 Tailoring jet 
fuel molecules

R2-CH-CH3

CH3

R3-H

R1=R2+R3
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HEFA Production RXs Network

 Reactions associated with HEFA production based on a range 
of large and unsaturated fatty acids content of lipid feedstocks
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Lipid Sources

 Plant oils
─ Triglycerides

─ Coconut oil renders 85% jet 
range (C10-C14) molecules

 Microalgae oils
─ Mostly FFAs

─ Trichodesmium erythraeum
renders 55% of jet molecules
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Lipid Source Type vs. H2 Consumption

Reaction type

Plant oils Microalgae oils

Comments
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1. Hydrogenolysis 2.0 2.0 2.0 2.0 0.0 0.0 0.0 0.0 • No H2 consumption during hydrogenolysis of microalgal lipids

2. Saturation 6.3 1.4 0.6 0.1 0.0 0.0 0.0 0.5

• Significant H2 consumption during this step
• Need for saturated lipids feedstocks (some plant oils)
• Can be improved for microalgae-based species by improving

cultivation strategy & genetic modification of algae strain

3. Deoxygenation 6.0 6.0 6.0 6.0 2.0 2.0 2.0 2.0
• Highest H2 consumption
• Can be improved by catalyst design optimization

4. Isomerization 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 • Comparable consumption (negligible)

5. Hydrocracking 2.6 2.6 2.5 0.5 0.9 0.8 0.7 0.4

• Comparable H2 consumption for all species 
• Can be improved for microalgae-based species only by 

improving cultivation strategy & genetic modification of algae 
strain

Total (mol H2/mol oil) 16.9 12.0 11.1 8.5 2.9 2.8 2.7 2.4

Total (mol H2/mol jet) 5.6 4.0 3.7 2.8 2.9 2.8 2.7 2.4
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Microalgal Oil Experimental Tests

 Evaluate different microalgae species 

─ Stichococcus sp., Nannochloropsis sp., Botryococcus braunii

 Develop technology for microalgal oil extraction and 
conversion to 3G-biofuels

MICROALGAE-BIO-PRODUCTS A. Karapatsia, et.al., 10th European Symposium on Biochemical 
Engineering Sciences and 6th International Forum on Industrial 
Bioprocesses, September 7-10, 2014, Lille, France
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Overall HEFAs Production
Carbon Footprint

Plant oils Microalgae oils
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A. Cultivation & lipid production 5.288 8.609 6.489 5.835 1.410 3.160 3.676 4.450

B. Hydrogenation 0.171 0.122 0.113 0.085 0.089 0.085 0.082 0.073

Total (g CO2-eq/MJ jet) 5.459 8.731 6.602 5.920 1.499 3.246 3.758 4.524

Sources:
[1] JRC Technical Report, 2014
[2] Spath, P.L., Mann, M.K. NREL report DE-AC36-99-GO10337, 2001
[3] Handler R.M., et.al.. Algal Research, 1, pp. 83-92, 2012
[4]. Medeiros, et.al. Journal of Cleaner Production, 96, pp.493-500,2015

Range of GHG 

emissions of 

conventional (fossil)

Jet fuel production
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Limits & Opportunities of HEFAs

 High production costs

─ Mostly related with lipid 
cultivation/extraction

 Current low crude oil 
prices

 Low aromatics

 Favorable carbon footprint

─ For some (not all) lipid 
sources

 Potential lipid integration 
in underlying refineries 
Hybrid jet
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Next Steps…

Horizon 20-20 project: Reliable Bio-based Refinery Intermediates - BIOMATES

Grant # 727463www.biomates.eu



For more information:

Dr. Stella Bezergianni
sbezerg@cperi.certh.gr

Tel:+302310498315 | Fax:+302310498380
Email: sbezerg@cperi.certh.gr | SkypeID: b2stella

Thank you for your attention
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Catalytic Hydrotreating &
Biomass Upgrading

 Common refining conversion technology
─ H/C ratio increase
─ Heteroatom (S, N, O) and metals removal
─ High conversion 
─ Feedstock variability
─ No by-products

Gasification
WaxFischer-Tropsch

synthesis

Catalytic
Hydrotreating

Liquid biomass

Gasoline
Diesel

Solid biomass
Pyrolysis biooilCatalytic

Pyrolysis

 Most effective technology for biomass upgrading
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Waste Lipids Upgrading …

• Better combustion (increased 
cetane)

• More economic (high HHV)
• More stable (no TAN, high IP)
• Sustainable



?

• Large-scale units require large 
investments

www.biofuels2g.gr

+ Η2

catalyst

Potential to cover 9,5% of Greek 
diesel demand

• Bezergianni, S. et al. (2014) Fuel 118:300
• Bezergianni, S.,et al. (2012), Fuel, 93:638
• Bezergianni, S., et al. (2011), Ind.Eng.Che.Res., 50(7):3874
• Bezergianni, S., et al. (2010), Biores. Techn., 101(19):7658
• Bezergianni, S., et al. (2010), Biores. Techn. 101(17):6651
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Is it possible to integrate 
biomass in refineries?
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Co-Processing Biomass
Technical & Environmental Targets

A. Technical feasibility
 Utilize existing 

infrastructure 

 Maintain similar 
operation

 Maintain same product 
quality 

B. Environmental 
performance
 Mitigate energy 

consumption

 Reduction of emissions 
(WTT)

Refinery
Crude

oil

Other

products

FAME

ethanol

Emissions

Energy

Biomass

Emissions

Fuels
Hybrid

fuels

www.sustaindiesel.gr

http://www.hellenic-petroleum.gr/online/index.aspx
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Technical Feasibility Assessment

Evaluation of hydrotreating
catalyst

Determine optimal 
operating conditions
─ T, P, Η2/oil, LHSV

Determine max WCO 
mixing ratio

Evaluate hybrid diesel
─ GHG emissions

─ engine performance
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Catalyst Evaluation
Heteroatom Removal

 NiMo catalyst showed a 
performance increase for the 
feedstock with the largest 
WCO content

 NiMo catalyst exhibited 
increased HDN performance 
with increasing WCO content

WCO addition does 
not decrease product 
quality when NiMo
catalyst is used
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Catalyst Evaluation
Deactivation Rate

 Catalyst deactivation rate is 
extremely important for 
catalyst selection

 Deactivation rate determined 
based on desulfurization 
efficiency at different DOS

 WCO by-product CO2 has a 
suspending role in HDS/HDN

NiMo deactivation 
rate is 3 times smaller 
than CoMo

1

1.1

1.2

1.3

1.4

1.5

3 12 25

Days On Stream (DOS)

Normalized desulfurization (1 for 100/0)
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Effect of Biomass Content
Heteroatom Removal & Diesel Yields

 Diesel yield favored with
increasing WCO

─ WCO contained triglycerides
can be more easily converted
into diesel range hydrocarbons

 Desulfurization is not limited
by WCO

Biomass integration favors 
diesel yields and renders 
low S diesel

Bezergianni, S. et al (2014), Fuel, 136:366
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Effect of Biomass Content
Hydrogen Consumption

 Hydrogen consumption 
affects process 
economics

 Hydrogen
consumption
increases due to 
underlying HDO kinetics

 Smaller WCO rates 
(<90%) are preferred for 
economic feasibility of 
WCO integration
─ 5-10% WCO → 7.5-8.5 

% increase in Η2

consumption

No more than 10% H2

consumption increase 
for less than 10% WCO
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Quality Assessment
Hybrid vs. Market Diesel

Properties Units
Hybrid 
diesel

Market 
diesel

Density kg/m3 825,8 829,2

Flash point °C 61 67

Sulpur wppm 8,2 5,8

Viscosity (40°C) cSt 2,996 3,066

Cetane index 59,1 58,3

Cetane number 56,7 55,7

Water wppm 100 60

CFPP °C -2 0

Polyaromatics %w/w 1,1 1,4

Lubricity μm 181 174

Recovery 95% v/v °C 353 353,2

Recovery at 250°C %v/v 26,8 25,8

Hybrid Diesel Market Diesel
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Environmental Performance 
Assessment

Fuel* type gCO2 eq/MJ

Market diesel 16.97

Hybrid diesel (WCO co-processing) 9.32

Diesel with WCO-based HVO 14.15

* All fuels have a total 7% v/v bio-content

Co-processing of biomass in refinery is environmentally and 
economically more sustainable allowing extended 

integration of biomass in transportation sector.

Expected 
reduction of GHG 
emissions by 45%

Bezergianni, S. et al (2015), Proceedings of GCGW-15
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Stand-alone Biomass Upgrading vs. 
Co-processing

Stand-alone biomass upgrading

 Produces drop-in biofuels 
(FAME, ethanol, HVOs, etc)
─ Technical limitations may be 

associated with end-use

 Requires infrastructure 
large CAPEX

 Utility intensive processes 
(fuel, NG, H2 etc)

 Ambiguous environmental 
benefits

Biomass co-processing

 Renders hybrid fuels (decarb 
gasoline, jet, diesel)
─ Fully compatible with fossil 

counterparts

 Utilizes existing 
infrastructure  low CAPEX

 Employs underlying utilities 
of refineries

 Clear reduction of CO2

emissions during production
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Conclusions

 Catalytic hydrotreatment is a key technology for 
biomass upgrading
─ Bio-based intermediates & lipids upgrading

─ Compatibility with fossil fuels, attractive properties

 Co-hydroprocessing can allow immediate and 
sustainable biomass integration with energy markets
─ No requirement of investments on new infrastructure

─ No significant technology limitations

─ Improvement of fuel sustainability (lower carbon foot-print)

─ Optimal way of integrating biomass in transportation sector 
from an environmental and economic point of view
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Biomass & Biofuels

 Energy crops
─ Sunflower, rapeseed, cotton, corn, 

barley, soy, sweet- sorghum, sugar-
beet etc

 Lignocellulosic material
─ Wood, paper industry waste, 

forestry waste etc

 Animal fats
 Agricultural and municipal

waste
 Waste cooking oil/fats
 Algae
 ….

BIOFUELS
Fuels produced from biomass

ΒΙΟMASS
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FAME Biodiesel
Most Common Biofuel in EU

 Fatty Acid Methyl Esters, FAME 
─ Produced via transesterification of fatty acids

 Lipid feedstocks / Triglycerides
─ Rape-seed oil, sunflower oil, cotton oil, tallow, waste 

cooking oil etc

─ Require dedicated cultivated areas  Food vs. Fuel

 Properties
 Environmentally friendly (reduced SOx, CO, aromatics)

 Higher cetane number and lubricity

▬ Reduced cold flow properties

▬ Low oxidation stability

▬ Tend to decompose  hydroperoxides, acids, cetones

 Utilized as mixture with conventional diesel
─ Β5 to Β20 (higher FAME content renders problems in 

warmer countries)

─ No major engine modifications required
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Bioethanol
Most Popular Biofuel Worldwide

 Sugar and starch feedstocks
─ Sugar-cane, sugarbeet, sweet-sorghum, corn, 

potato, etc

─ Require dedicated cultivated areas 
Food vs. Fuel

 Properties
 Similar combustion with gasoline
 Reduction of emissions
 Higher octane number

» Employed as octane booster

 Increase engine performance
▬ Requires high purity ethanol in gasoline mixtures 

(99.5-99.9%)

 Utilized in mixtures with gasoline
─ Most common E10, ideal E85 (FFVs)


